scholarly journals Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer

2008 ◽  
Vol 105 (40) ◽  
pp. 15505-15510 ◽  
Author(s):  
Yoshihiro Miyahara ◽  
Kunle Odunsi ◽  
Wenhao Chen ◽  
Guangyong Peng ◽  
Junko Matsuzaki ◽  
...  

Despite the important role of Th17 cells in the pathogenesis of many autoimmune diseases, their prevalence and the mechanisms by which they are generated and regulated in cancer remain unclear. Here, we report the presence of a high percentage of CD4+ Th17 cells at sites of ovarian cancer, compared with a low percentage of Th17 cells in peripheral blood mononuclear cells from healthy donors and cancer patients. Analysis of cytokine production profiles revealed that ovarian tumor cells, tumor-derived fibroblasts, and antigen-presenting cells (APCs) secreted several key cytokines including IL-1β, IL-6, TNF-α and TGF-β, which formed a cytokine milieu that regulated and expanded human IL-17-producing T-helper (Th17) cells. We further show that IL-1β was critically required for the differentiation and expansion of human Th17 cells, whereas IL-6 and IL-23 may also play a role in the expansion of memory Th17 cells, even though IL-23 levels are low or undetectable in ovarian cancer. Further experiments demonstrated that coculture of naïve or memory CD4+ T cells with tumor cells, APCs, or both could generate high percentages of Th17 cells. Treatment with anti-IL-1 alone or a combination of anti-IL-1 and anti-IL-6 reduced the ability of tumor cells to expand memory Th17 cells. Thus, we have identified a set of key cytokines secreted by ovarian tumor cells and tumor-associated APCs that favor the generation and expansion of human Th17 cells. These findings should accelerate efforts to define the function of this important subset of CD4+ T cells in the human immune response to cancer.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nirupama D. Verma ◽  
Andrew D. Lam ◽  
Christopher Chiu ◽  
Giang T. Tran ◽  
Bruce M. Hall ◽  
...  

AbstractResting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10220 ◽  
Author(s):  
Silvia Pérez-Pérez ◽  
María Inmaculada Domínguez-Mozo ◽  
Aitana Alonso-Gómez ◽  
Silvia Medina ◽  
Noelia Villarrubia ◽  
...  

Background Gut microbiota has been related to multiple sclerosis (MS) etiopathogenesis. Short-chain fatty acids (SCFA) are compounds derived from microbial metabolism that have a role in gut-brain axis. Objectives To analyse SCFA levels in plasma of MS patients and healthy donors (HD), and the possible link between these levels and both clinical data and immune cell populations. Methods Ninety-five MS patients and 54 HD were recruited. Patients were selected according to their score in the Expanded Disability Status Scale (EDSS) (49 EDSS ≤ 1.5, 46 EDSS ≥ 5.0). SCFA were studied in plasma samples by liquid chromatography-mass spectrometry. Peripheral blood mononuclear cells were studied by flow cytometry. Gender, age, treatments, EDSS and Multiple Sclerosis Severity Score (MSSS) were evaluated at the recruitment. Results Plasma acetate levels were higher in patients than in HD (p = 0.003). Patients with EDSS ≥ 5.0 had higher acetate levels than those with EDSS≤ 1.5 (p = 0.029), and HD (p = 2.97e–4). Acetate levels correlated with EDSS (r = 0.387; p = 1.08e–4) and MSSS (r = 0.265; p = 0.011). In untreated MS patients, acetate levels correlated inversely with CD4+ naïve T cells (r =  − 0.550, p = 0.001) and directly with CD8+ IL-17+ cells (r = 0.557; p = 0.001). Conclusions Plasma acetate levels are higher in MS patients than in HD. In MS there exists a correlation between plasma acetate levels, EDSS and increased IL-17+ T cells. Future studies will elucidate the role of SCFA in the disease.


2019 ◽  
Vol 20 (5) ◽  
pp. 1139 ◽  
Author(s):  
Tsui Mao ◽  
Carol Miao ◽  
Yi Liao ◽  
Ying Chen ◽  
Chia Yeh ◽  
...  

γδ-T-cells have attracted attention because of their potent cytotoxicity towards tumors. Most γδ-T-cells become activated via a major histocompatibility complex (MHC)-independent pathway by the interaction of their receptor, Natural Killer Group 2 Member D (NKG2D) with the tumor-specific NKG2D ligands, including MHC class I-related chain A/B (MICA/B) and UL16-binding proteins (ULBPs), to kill tumor cells. However, despite their potent antitumor effects, the treatment protocols specifically targeting ovarian tumors require further improvements. Ovarian cancer is one of the most lethal and challenging female malignancies worldwide because of delayed diagnoses and resistance to traditional chemotherapy. In this study, we successfully enriched and expanded γδ-T-cells up to ~78% from peripheral blood mononuclear cells (PBMCs) with mostly the Vγ9Vδ2-T-cell subtype in the circulation. We showed that expanded γδ-T-cells alone exerted significant cytotoxic activities towards specific epithelial-type OVCAR3 and HTB75 cells, whereas the combination of γδ-T cells and pamidronate (PAM), a kind of aminobisphosphonates (NBPs), showed significantly enhanced cytotoxic activities towards all types of ovarian cancer cells in vitro. Furthermore, in tumor xenografts of immunodeficient NSG mice, γδ-T-cells not only suppressed tumor growth but also completely eradicated preexisting tumors with an initial size of ~5 mm. Thus, we concluded that γδ-T-cells alone possess dramatic cytotoxic activities towards epithelial ovarian cancers both in vitro and in vivo. These results strongly support the potential of clinical immunotherapeutic application of γδ-T-cells to treat this serious female malignancy.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Carolina V. Messias ◽  
Julia P. Lemos ◽  
Daniela P. Cunha ◽  
Zilton Vasconcelos ◽  
Lidiane M. S. Raphael ◽  
...  

Abstract Background Zika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV. Methods PBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry. Results We detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3−CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells. Conclusions These findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2545-2545
Author(s):  
A. Siva ◽  
H. Xin ◽  
F. Qin ◽  
A. Mickel ◽  
S. Faas ◽  
...  

2545 Background: Immune escape by tumors can occur by multiple mechanisms, each a significant barrier to immunotherapy. Upregulation of the immunosuppressive molecule CD200 on chronic lymphocytic leukemia cells inhibits Th1 cytokine production required for an effective cytotoxic T cell response. CD200 expression on human tumor cells in animal models prevents human lymphocytes from rejecting the tumor; treatment with an antagonistic anti-CD200 antibody restored lymphocyte-mediated tumor growth inhibition. This study evaluated CD200 expression on other cancers, and its effect on immune response. Methods: CD200 levels in ovarian adenocarcinoma and metastatic melanoma samples were evaluated by RT-QPCR and immunohistochemistry. Cell-surface CD200 on melanoma and ovarian cancer cell lines was assessed by flow cytometry. The effect of CD200 on cytokine production in mixed lymphocyte reactions (MLR) was assessed by adding the cells to cultures containing human monocyte-derived dendritic cells and allogeneic T cells. Th1 and Th2 cytokines in culture supernatants were detected by ELISA. Results: RT-QPCR showed CD200 expression levels upregulated in serous ovarian adenocarcinoma compared to normal samples. In malignant melanoma, CD200 expression in jejunum metastases was significantly higher than in normal samples, and 2 of 6 lung metastases showed CD200 upregulation. IHC showed strong, membrane-associated CD200 staining on malignant cells of two melanoma patients. Three ovarian cancer patients showed varying levels of CD200 tumor staining; all showed strong stromal staining. CD200 was highly expressed on the cell surface of SK-MEL-24 and SK-MEL-28 melanoma and OV-CAR-3 ovarian cancer cell lines and moderately expressed on the melanoma cell line SK-MEL-5. Addition of these cell lines to MLRs downregulated the production of Th1 cytokines; addition of CD200-negative cell lines did not. Inclusion of an antagonistic anti-CD200 antibody during the culture restored Th1 cytokine responses. Conclusion: Melanoma and ovarian tumor cells can upregulate CD200, thereby potentially suppressing anti-tumor immune responses. Therapy with an antagonistic anti-CD200 antibody may permit an effective cytotoxic immune response against the tumor cells. [Table: see text]


Diabetologia ◽  
2021 ◽  
Author(s):  
Joanne Boldison ◽  
Anna E. Long ◽  
Rachel J. Aitken ◽  
Isabel V. Wilson ◽  
Clare Megson ◽  
...  

Abstract Aims/hypothesis Slow progressors to type 1 diabetes are individuals positive for multiple pancreatic islet autoantibodies who have remained diabetes-free for at least 10 years; regulation of the autoimmune response is understudied in this group. Here, we profile CD4+ regulatory T cells (Tregs) in a small but well-characterised cohort of extreme slow progressors with a median age 43 (range 31–72 years), followed up for 18–32 years. Methods Peripheral blood samples were obtained from slow progressors (n = 8), age- and sex-matched to healthy donors. One participant in this study was identified with a raised HbA1c at the time of assessment and subsequently diagnosed with diabetes; this donor was individually evaluated in the analysis of the data. Peripheral blood mononuclear cells (PBMCs) were isolated, and to assess frequency, phenotype and function of Tregs in donors, multi-parameter flow cytometry and T cell suppression assays were performed. Unsupervised clustering analysis, using FlowSOM and CITRUS (cluster identification, characterization, and regression), was used to evaluate Treg phenotypes. Results Unsupervised clustering on memory CD4+ T cells from slow progressors showed an increased frequency of activated memory CD4+ Tregs, associated with increased expression of glucocorticoid-induced TNFR-related protein (GITR), compared with matched healthy donors. One participant with a raised HbA1c at the time of assessment had a different Treg profile compared with both slow progressors and matched controls. Functional assays demonstrated that Treg-mediated suppression of CD4+ effector T cells from slow progressors was significantly impaired, compared with healthy donors. However, effector CD4+ T cells from slow progressors were more responsive to Treg suppression compared with healthy donors, demonstrated by increased suppression of CD25 and CD134 expression on effector CD4+ T cells. Conclusions/interpretations We conclude that activated memory CD4+ Tregs from slow progressors are expanded and enriched for GITR expression, highlighting the need for further study of Treg heterogeneity in individuals at risk of developing type 1 diabetes. Graphical abstract


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 217-217 ◽  
Author(s):  
Ruwan Parakrama ◽  
Imran Chaudhary ◽  
Matthew C. Coffey ◽  
Sanjay Goel ◽  
Radhashree Maitra

217 Background: Viruses are well known immune sensitizing agents. The therapeutic efficacy of oncolytic reovirus in combination with chemotherapy is underway in a phase 1 study of mCRC. This study evaluates the nature of immune response by determining the distribution of antigen presenting cells (APCs) and activated T lymphocytes along with the cytokine expression pattern in peripheral circulation. Methods: REO was administered as a 60-minute intravenous infusion for 5 consecutive days every 28 days, at a tissue culture infective dose (TCID50) of 3x106. Serum was collected pre- and post- REO on days 1, pre REO on days 2-5, and days 8, 15, 22, and 29. Peripheral blood mononuclear cells (PBMC) were isolated and stained with fluorophore labelled antibodies against CD4, CD8, CD56, CD70, and CD123. Stained cells were fixed and evaluated by flow cytometry. The expression profile of 25 cytokines in plasma was assessed (post PBMC isolation) on an EMD Millipore multiplex Luminex platform. Results: Patients mount a robust immune response with dendritic cell maturation at 48 hrs (p < 0.01) followed by activation of cytotoxic T (CD8+) cells at Day 8 (p < 0.01). Cytokine assay indicated upregulation of Interleukin 1 beta (IL-1β; p = 0.004), Granulocyte-macrophage colony-stimulating factor (GM-CSF; p = 0.05), the chemokine Macrophage Inflammatory Proteins (MIP-1β; p = 0.05) at day 15. Furthermore, consistent upregulation of inflammatory cytokine IL-6 was seen from days 3 through 8 (p < 0.05), and decrease in IL-8 at 72 hrs (p = 0.03) was observed. Conclusions: REO induces strong immune response in patients with mCRC. APCs are stimulated within 48 hrs and activated (CD8+ CD70+) T cells within 168 hrs. Cytokine profiling indicates stimulation for maturation of APCs, chemotactic induction for macrophages and activation of T cells as highlighted by release of IL-1β, GM-CSF and MIP-1β respectively. Sustained increased expression of IL-6 (triggering lymphocyte maturation) and downregulation of IL-8 (pro-angiogenic cytokine) is also observed. REO thus functions bimodally as an oncolytic agent causing lysis of tumor cells, and facilitator of immune-mediated recognition and destruction of tumor cells. Clinical trial information: NCT01274624.


2004 ◽  
Vol 11 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Lazaros I. Sakkas ◽  
George Koussidis ◽  
Efthimios Avgerinos ◽  
John Gaughan ◽  
Chris D. Platsoucas

ABSTRACT Osteoarthritis (OA) is a heterogeneous disease which rheumatologists consider to be noninflammatory. However, recent studies suggest that, at least in certain patients, OA is an inflammatory disease and that patients often exhibit inflammatory infiltrates in the synovial membranes (SMs) of macrophages and activated T cells expressing proinflammatory cytokines. We report here that the expression of CD3ζ is significantly decreased in T cells infiltrating the SMs of patients with OA. The CD3ζ chain is involved in the T-cell signal transduction cascade, which is initiated by the engagement of the T-cell antigen receptor and which culminates in T-cell activation. Double immunofluorescence of single-cell suspensions derived from the SMs from nine patients with OA revealed significantly increased proportions of CD3ε-positive (CD3ε+) cells compared with the proportions of CD3ζ-positive (CD3ζ+) T cells (means ± standard errors of the means, 80.48% ± 3.92% and 69.02% ± 6.51%, respectively; P = 0.0096), whereas there were no differences in the proportions of these cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (94.73% ± 1.39% and 93.79% ± 1.08%, respectively; not significant). The CD3ζ+ cell/CD3ε+ cell ratio was also significantly decreased for T cells from the SMs of patients with OA compared with that for T cells from the PBMCs of healthy donors (0.84 ± 0.17 and 0.99 ± 0.01, respectively; P = 0.0302). The proportions of CD3ε+ CD3ζ+ cells were lower in the SMs of patients with OA than in the PBMCs of healthy donors (65.04% ± 6.7% and 90.81% ± 1.99%, respectively; P = 0.0047). Substantial proportions (about 15%) of CD3ε+ CD3ζ-negative (CD3ζ−) and CD3ε-negative (CD3ε−) CD3ζ− cells were found in the SMs of patients with OA. Amplification of the CD3ζ and CD3δ transcripts from the SMs of patients with OA by reverse transcriptase PCR consistently exhibited stronger bands for CD3δ cDNA than for CD3ζ cDNA The CD3ζ/CD3δ transcript ratio in the SMs of patients with OA was significantly lower than that in PBMCs from healthy controls (P < 0.0001). These results were confirmed by competitive MIMIC PCR. Immunoreactivities for the CD3ζ protein were detected in the SMs of 10 of 19 patients with OA, and they were of various intensities, whereas SMs from all patients were CD3ε+ (P = 0.0023). The decreased expression of the CD3ζ transcript and protein in T cells from the SMs of patients with OA relative to that of the CD3ε transcript is suggestive of chronic T-cell stimulation and supports the concept of T-cell involvement in OA.


Sign in / Sign up

Export Citation Format

Share Document