scholarly journals Tech innovation systems in agriculture

Author(s):  
Marco Vieri ◽  
Daniele Sarri ◽  
Stefania Lombardo ◽  
Marco Rimediotti ◽  
Riccardo Lisci ◽  
...  

The technological models related to farm machinery have had a different evolution in relation to structural and social conditions. Thus we have the American - Western model, capital intensive, with large machines and at the opposite the Asian model, labor intensive, with small and sophisticated machines suitable for small and family farms. Even if, in the large scale machinery, the implementation of new technologies requires less investment in percentage, all farm technical management system may have advantages by the new technology: a) measuring parameters and processes, b) assessing data by informatics models giving information optimization c) availabilit6y of tools to manage the single specific resource. That is Precision Farming.

2020 ◽  
Vol 224 ◽  
pp. 01035
Author(s):  
O.M. Safonova ◽  
N.V. Kotelnikov

The implementation of information security systems is one of the main components, without which the existence of any modern medical institution is impossible. This question is actual for the healthcare industry. This is confirmed by the presence of large-scale measures that are being implemented as part of the Russian Federation’s healthcare modernization program. But the result of informatization is not always achieved easily and successfully. This process includes the equipment of the technical support of the organization and the fragmentary implementation of information systems to the full informatization of medical institutions with the introduction of full-featured medical information systems. Informatization of healthcare organizations makes it possible to systematize a large amount of information. In turn, this requires the implementation of personal data protection systems, storage, archiving and access to this data. The introduction of these systems into the healthcare industry of the Russian Federation has recently entered a new stage. It has complex tasks to integrate new technologies that provide information security to medicine. So, the most pressing problem of the medical industry is information protection, that is, the creation of an ISMS (information security management system).


2013 ◽  
Vol 5 (1) ◽  
pp. 24-30
Author(s):  
Ashish Sood ◽  
Gerard J. Tellis

Abstract In many industries, new technologies represent a serious threat to established companies. If underestimated, they can endanger their survival. Even if the chances of being disrupted are rather low, companies are well advised to watch out for emerging trends. A large-scale study analyzed the technological evolution of seven markets over several decades and found surprising results, which were not always in line with the most common theories on the topic. The researcher observed that it was not always easy to predict which technology would ultimately prevail because old and new technologies regularly coexisted for some time and evolution was often erratic. New technologies were introduced both by incumbents and newcomers to the market. Chances of success were higher when the new technology was priced lower than the established technology, but price was less important than quality. Technologies with higher introduction prices also succeeded when they were superior. New technologies always introduced new dimensions of importance, which gained importance in competition over time. In many cases it was not the pioneer who ultimately succeeded with the new technology. It seems important to believe and invest in new technology, and to not abandon it too early. Further, companies might consider a “self-cannibalization strategy” during the times of transition from the old to the new technology.


2020 ◽  
Vol 78 (12) ◽  
pp. 1276-1285
Author(s):  
Shibu John A

Enterprise asset management (EAM) systems are used by asset owners and/or operators to manage the maintenance of their physical assets. These assets, including equipment, facilities, vehicles, and infrastructure, need maintenance to sustain their operations. An EAM system provides the means to have less unplanned downtime and extended asset longevity, which offers clear business benefits that improve the profit and loss statement and balance sheet. Particularly for capital-intensive industries, like drilling and exploration, the failure of on-time delivery of critical equipment or processes is disruptive and costs nonproductive time and customer satisfaction. Organizations understand these issues and employ an appropriate asset management system to engineer their asset maintenance and management. An EAM system is needed to manage the people, assets/equipment, and processes. EAMs are used to plan, optimize, execute, and track the needed maintenance activities with associated priorities, skills, materials, tools, and information. Similarly, nondestructive testing (NDT) is used as a tool for integrity assessment of assets in drilling and exploration. The main advantage of using NDT is that the item’s intended use or serviceability is not affected. The selection of a specific technique should be based on knowledge and skills that include design, material processing, and material evaluation. Validating the purpose of this paper, we emphasize the importance of optimizing the asset utilization and serviceability to enhance overall efficiency by integrating EAM software that manages assets, the operation management system (OMS) controlling the processes, and asset inspection management systems (AIMSs).


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


2020 ◽  
Author(s):  
Pranav C

UNSTRUCTURED The word blockchain elicits thoughts of cryptocurrency much of the time, which does disservice to this disruptive new technology. Agreed, bitcoin launched in 2011 was the first large scale implementation of blockchain technology. Also, Bitcoin’s success has triggered the establishment of nearly 1000 new cryptocurrencies. This again lead to the delusion that the only application of blockchain technology is for the creation of cryptocurrency. However, the blockchain technology is capable of a lot more than just cryptocurrency creation and may support such things as transactions that require personal identification, peer review, elections and other types of democratic decision-making and audit trails. Blockchain exists with real world implementations beyond cryptocurrencies and these solutions deliver powerful benefits to healthcare organizations, bankers, retailers and consumers among others. One of the areas where blockchain technology can be used effectively is healthcare industry. Proper application of this technology in healthcare will not only save billions of money but also will contribute to the growth in research. This review paper briefly defines blockchain and deals in detail the applications of blockchain in various areas particularly in healthcare industry.


2015 ◽  
Vol 51 (1) ◽  
pp. 121-132 ◽  
Author(s):  
S. Spitans ◽  
E. Baake ◽  
B. Nacke ◽  
A. Jakovičs

2021 ◽  
Vol 13 (9) ◽  
pp. 4772
Author(s):  
Hanna Klikocka ◽  
Aneta Zakrzewska ◽  
Piotr Chojnacki

The article describes and sets the definition of different farm models under the categories of being family, small, and large-scale commercial farms. The distinction was based on the structure of the workforce and the relationship between agricultural income and the minimum wage. Family farms were dominated by the farming family providing the labour and their income per capita exceeded the net minimum wage in the country. The larger commercial farms feature a predominance of hired labour. Based on surveys, it was found that in 2016 in the EU-28 there were 10,467,000 farms (EU-13—57.3%, EU-15—42.7%). They carried out agricultural activities on an area of 173,338,000 ha (EU-13—28.5%, EU-15—71.5%). Countries of the EU-28 generated a standard output (SO) amounting to EUR 364,118,827,100 (EU-13—17.2% and EU-15—82.8%). After the delimitation, it was shown that small farming (70.8%) was the predominant form of management in the European Union (EU-13—88.2% and EU-15—79.8%) compared to family farming (18.4%) (EU-13—10.5% and EU-15—29%). In most EU countries the largest share of land resources pertains to small farms (35.6%) and family farms (38.6%) (UAA—utilised agricultural area of farms).


Sign in / Sign up

Export Citation Format

Share Document