scholarly journals Human Adipose-Derived Stem Cells Suppress Elastase-Induced Murine Abdominal Aortic Inflammation and Aneurysm Expansion through Paracrine Factors

2017 ◽  
Vol 26 (2) ◽  
pp. 173-189 ◽  
Author(s):  
Jie Xie ◽  
Thomas J. Jones ◽  
Dongni Feng ◽  
Todd G. Cook ◽  
Andrea A. Jester ◽  
...  

Abdominal aortic aneurysm (AAA) is a potentially lethal disease associated with immune activation-induced aortic degradation. We hypothesized that xenotransplantation of human adipose-derived stem cells (hADSCs) would reduce aortic inflammation and attenuate expansion in a murine AAA model. Modulatory effects of ADSCs on immune cell subtypes associated with AAA progression were investigated using human peripheral blood mononuclear cells (hPBMNCs) cocultured with ADSCs. Murine AAA was induced through elastase application to the abdominal aorta in C57BL/6 mice. ADSCs were administered intravenously, and aortic changes were determined by ultrasonography and videomicrometry. Circulating monocytes, aortic neutrophils, CD28− T cells, FoxP3+ regulatory T cells (Tregs), and CD206+ M2 macrophages were assessed at multiple terminal time points. In vitro, ADSCs induced M2 macrophage and Treg phenotypes while inhibiting neutrophil transmigration and lymphocyte activation without cellular contact. Intravenous ADSC delivery reduced aneurysmal expansion starting from day 4 [from baseline: 54.8% (saline) vs. 16.9% (ADSCs), n = 10 at baseline, n = 4 at day 4, p < 0.001], and the therapeutic effect persists through day 14 (from baseline: 64.1% saline vs. 24.6% ADSCs, n = 4, p < 0.01). ADSC administration increased aortic Tregs by 20-fold ( n = 5, p < 0.01), while decreasing CD4+CD28− (-28%), CD8+CD28− T cells (-61%), and Ly6G/C+ neutrophils (-43%, n = 5, p < 0.05). Circulating CD115+CXCR1−LY6C+-activated monocytes decreased in the ADSC-treated group by day 7 (-60%, n = 10, p < 0.05), paralleled by an increase in aortic CD206+ M2 macrophages by 2.4-fold ( n = 5, p < 0.05). Intravenously injected ADSCs transiently engrafted in the lung on day 1 without aortic engraftment at any time point. In conclusion, ADSCs exhibit pleiotropic immunomodulatory effects in vitro as well as in vivo during the development of AAA. The temporal evolution of these effects systemically as well as in aortic tissue suggests that ADSCs induce a sequence of anti-inflammatory cellular events mediated by paracrine factors, which leads to amelioration of AAA progression.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ke Xie ◽  
Yu-sen Chai ◽  
Shi-hui Lin ◽  
Fang Xu ◽  
Chuan-jiang Wang

Objectives. Inflammatory disease characterized by clinical destructive respiratory disorder is called acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Studies have shown that luteolin exerts anti-inflammatory effects by increasing regulatory T cells (Tregs). In this study, we aimed to determine the effects of luteolin on ALI/ARDS and Treg differentiation. Methods. In this paper, we used cecal ligation puncture (CLP) to generate an ALI mouse model to determine the effects of luteolin on ALI/ARDS. Lung tissues were stained for interleukin- (IL-) 17A and myeloperoxidase (MPO) by immunohistochemical analysis. The levels of Treg-related cytokines in serum and bronchoalveolar lavage fluid (BALF) of mice were detected. The protein levels of NF-κB p65 in lung tissues were measured. Macrophage phenotypes in lung tissues were measured using immunofluorescence. The proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells (PBMCs) was quantified. Furthermore, in vitro, we evaluated the effects of luteolin on Treg differentiation, and the effects of IL-10 immune regulation on macrophage polarization were examined. Results. Luteolin alleviated lung injury and suppressed uncontrolled inflammation and downregulated IL-17A, MPO, and NF-κB in the lungs of CLP-induced mouse models. At this time, luteolin upregulated the level of IL-10 in serum and BALF and the frequency of CD4+CD25+FOXP3+ Tregs in PBMCs and splenic mononuclear cells of CLP mice. Luteolin treatment decreased the proportion of M1 macrophages and increased the proportion of M2 macrophages in lungs of CLP-induced mouse models. In vitro, administration of luteolin significantly induced Treg differentiation, and IL-10 promoted the polarization of M2 macrophages but reduced the polarization of M1 macrophages. Conclusions. Luteolin alleviated lung injury and suppressed uncontrolled inflammation by inducing the differentiation of CD4+CD25+FOXP3+ Tregs and upregulating the expression of IL-10. Furthermore, the anti-inflammatory cytokine IL-10 promoted polarization of M2 macrophages in vitro. Luteolin-induced Treg differentiation from naïve CD4+ T cells may be a potential mechanism for regulating IL-10 production.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
S. Keisin Wang ◽  
Linden Green ◽  
Jie Xie ◽  
Raghu Motaganahalli ◽  
Andres Fajardo ◽  
...  

Objective: The formation of an abdominal aortic aneurysm (AAA) is characterized by a dominance of pro-inflammatory forces that result in smooth muscle cell apoptosis, extra-cellular matrix degradation, and progressive diameter expansion. Additional defects in the anti-inflammatory response may also contribute to AAA progression, however have yet to be characterized robustly. Here, we describe the role of the anti-inflammatory cytokine TSG-6 (TNF-stimulated gene-6) in AAA formation. Methods: Blood and aortic tissue samples were collected from patients undergoing elective AAA screening and open surgical AAA repair. Aortic specimens collected were preserved for IHC or immediately assayed after tissue homogenization. Cytokine concentrations in tissue and plasma were assayed by ELISA. All immune cell populations were assayed using FACS analysis. In vitro, macrophage polarization from monocytes were performed with young, healthy donor PBMCs. Results: TSG-6 was found to be abnormally elevated in both the plasma and aorta of patients with AAA compared to healthy and risk-factor matched non-AAA donors. We observed the highest tissue concentration of TSG-6 in the less diseased proximal and distal shoulders compared to the central aspect of the aneurysm. IHC localized the majority of TSG-6 to the tunica media with minor expression in the tunica adventitia of the aortic wall. Higher concentrations of both M1 and M2 macrophages where also observed in the aortic wall, however M1/M2 ratios were unchanged from healthy controls. Additionally, we observed no difference in M1/M2 ratios in the peripheral blood of risk-factor matched non-AAA and AAA patients. Interesting, TSG-6 inhibited the polarization of the anti-inflammatory M2 phenotype in vitro . Conclusions: AAA formation results from an imbalance of inflammatory forces causing aortic wall infiltration of mononuclear cells leading to resultant vessel breakdown. From our results, we suggest TSG-6 is elevated in the AAA patient as a compensatory anti-inflammatory feedback mechanism. However, it’s effects may be abrogated by defects in CD44, its cognate receptor or downstream signaling pathways, future areas for investigation.


2021 ◽  
Vol 22 (2) ◽  
pp. 579
Author(s):  
Seok Hee Lee

An essential requirement for the success of in vitro maturation (IVM) of the oocyte is to provide an optimal microenvironment similar to in vivo conditions. Recently, somatic cell-based coculture or supplementation of a conditioned medium during IVM has been performed to obtain better quality of oocytes, because they mimic the in vivo reproductive tract by secreting paracrine factors. In this study, human adipose-derived stem cells (ASC) and their conditioned medium (ASC-CM) were applied to IVM of porcine oocytes to evaluate the effectiveness of ASC on oocyte development and subsequent embryo development. In results, both ASC and ASC-CM positively influence on oocyte maturation and embryo development by regulating growth factor receptors (VEGF, FGFR, and IGFR), apoptosis (BCL2), cumulus expansion (PTGS2, HAS2, and TNFAIP6), and oocyte maturation-related genes (GDF9 and BMP15). In particular, the fluorescence intensity of GDF9 and BMP15 was markedly upregulated in the oocytes from the ASC-CM group. Furthermore, significantly high levels of growth factors/cytokine including VEGF, bFGF, IGF-1, IL-10, and EGF were observed in ASC-CM. Additionally, the ASC-CM showed active scavenging activity by reducing the ROS production in a culture medium. Consequently, for the first time, this study demonstrated the effect of human ASC-CM on porcine oocyte development and the alteration of mRNA transcript levels in cumulus–oocyte complexes.


Author(s):  
Jian Chang ◽  
Hanjun Li ◽  
Zhongchao Zhu ◽  
Pei Mei ◽  
Weimin Hu ◽  
...  

Abstract Aim Given the fact that tumor-associated macrophage-derived extracellular vesicles (EVs) are attributable to tumor aggressiveness, this research intends to decode the mechanism of M2 macrophage-derived EVs in the differentiation and activities of pancreatic cancer (PaCa) stem cells via delivering microRNA (miR)-21-5p. Methods Polarized M2 macrophages were induced, from which EVs were collected and identified. miR-21-5p expression in M2 macrophage-derived EVs was tested. After cell sorting, CD24+CD44+EpCAM+ stem cells were co-cultured with M2 macrophages, in which miR-21-5p was upregulated or downregulated. The effects of M2 macrophage-derived EVs and miR-21-5p on Nanog/octamer-binding transcription factor 4 (Oct4) expression, sphere formation, colony formation, invasion and migration capacities, apoptosis, and in vivo tumorigenic ability were examined. Krüppel-like factor 3 (KLF3) expression and its interaction with miR-21-5p were determined. Results M2 macrophage-derived EVs promoted PaCa stem cell differentiation and activities. miR-21a-5p was upregulated in M2 macrophage-derived EVs. miR-21a-5p downregulation in M2 macrophage-derived EVs inhibited Nanog/Oct4 expression and impaired sphere-forming, colony-forming, invasion, migration, and anti-apoptosis abilities of PaCa stem cells in vitro and tumorigenic ability in vivo. miR-21-5p targeted KLF3 to mediate the differentiation and activities of PaCa stem cells, and KLF3 was downregulated in PaCa stem cells. Conclusion This work explains that M2 macrophage-derived exosomal miR-21a-5p stimulates differentiation and activity of PaCa stem cells via targeting KLF3, paving a novel way for attenuating PaCa stemness. Graphical abstract


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1072
Author(s):  
Enrico Ragni ◽  
Alessandra Colombini ◽  
Marco Viganò ◽  
Francesca Libonati ◽  
Carlotta Perucca Orfei ◽  
...  

Intra-articular administration of adipose-derived mesenchymal stem cells (ASCs), either in vitro expanded or within adipose tissue-based products obtained at point-of-care, has gained popularity as innovative regenerative medicine approach for osteoarthritis (OA) treatment. ASCs can stimulate tissue repair and immunomodulation through paracrine factors, both soluble and extracellular vesicles (EV) embedded, collectively defining the secretome. Interaction with the degenerative/inflamed environment is a crucial factor in understanding the finely tuned molecular message but, to date, the majority of reports have described ASC-secretome features in resting conditions or under chemical stimuli far from the in vivo environment of degenerated OA joints. In this report, the secretory profile of ASCs treated with native synovial fluid from OA patients was evaluated, sifting 200 soluble factors and 754 EV-embedded miRNAs. Fifty-eight factors and 223 EV-miRNAs were identified, and discussed in the frame of cartilage and immune cell homeostasis. Bioinformatics gave a molecular basis for M2 macrophage polarization, T cell proliferation inhibition and T reg expansion enhancement, as well as cartilage protection, further confirmed in an in vitro model of OA chondrocytes. Moreover, a strong influence on immune cell chemotaxis emerged. In conclusion, obtained molecular data support the regenerative and immunomodulatory properties of ASCs when interacting with osteoarthritic joint environment.


2020 ◽  
Author(s):  
Dongdong Wang ◽  
Yi Fu ◽  
Junfen Fan ◽  
Chao Li ◽  
Yi Xu ◽  
...  

Abstract Background: Given their low immunogenicity and multiple differentiation capacities, mesenchymal stem cells (MSCs) have the potential to be used for “off-the-shelf” cell therapy. However, MSC allorejection indicates that they are not fully immune privileged. In this study, we investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules.Methods: To evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), and T cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction (MLR) and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput TCR repertoire sequencing and mass spectrometry were applied to identify potential immunogenic molecules.Results: Allogeneic human Ad-MSCs recruited T cells during transplantation and caused faster clearance in hu-mice than NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NSG) mice. The proliferation and activation of T cells was significantly enhanced by human Ad-MSCs, and the expression level of HLA-II on human Ad-MSCs was dramatically increased after coculture with human peripheral blood mononuclear cells (PBMCs) in vitro. In addition, upregulated expression of alpha-enolase (ENO1) on the surface of human Ad-MSCs increased their immunogenicity, and ENO1 inhibitor treatment decreased the human Ad-MSC triggered proliferation of T cells in vitro.Conclusions: We further confirmed the immunogenicity of human Ad-MSCs during allogeneic transplantation and provided a potential target, ENO1, for the safe clinical application of allogeneic human Ad-MSC therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


Sign in / Sign up

Export Citation Format

Share Document