Role of Nanoparticles in Pharmacotherapy of Cancer Therapy

Author(s):  
Anupam Roy

Despite several dozen medications, millions of people are dying every year due to cancer. Additionally, the survival patients suffer from various serious side effects due to the use of available anticancerdrugs. The development of nanoparticle based drugs seems to be effective providing low side effects and targeted action on cancer cells. Nanoparticles are particles between 1 and 100 nanometers in size. Nanoparticles have unique biological properties given their small size and large surface area-to-volume ratio, which allows them to bind, absorb, and carry compounds such as small molecule drugs, DNA, RNA, proteins, and probes with high efficiency. Their tunable size, shape, and surface characteristics also enable them to have high stability, high carrier capacity, greater ability to incorporate both hydrophilic and hydrophobic substances, and compatibility with different administration routes, thereby making them highly attractive in many aspects of oncology.

Drug Research ◽  
2017 ◽  
Vol 67 (12) ◽  
pp. 681-687 ◽  
Author(s):  
S. Ghanbarzadeh ◽  
H. Hamishehkar

AbstractAlthough chemotherapies are successful in some cases, systemic toxicity could be simultaneously observed due to the lack of drugs selectivity to cancerous tissues, leading to the failure of the chemotherapies. Furthermore, the therapeutic effects will be significantly improved if the anticancer drugs could be delivered to cancer cells with high selectivity. In recent years, there have been many advances in the field of diagnosis and treatment of cancer as a result of the development of novel materials with noticeable and often unique properties. Nanoparticles have unique biological properties, owing to their small size and large surface area-to-volume ratio, which allow them to bind, absorb, and carry compounds such as small molecule drugs, DNA, RNA, proteins, and probes with high efficiency. In the course of the last decade, Graphene and its derivatives have attracted growing interest in medicinal and pharmaceutical sciences, and many studies have focused on the potential of Graphene and its derivatives as carriers for targeted drug delivery intended for cancer diagnosis and therapies. In the present study, we will review the characteistics and application of Graphene and its different derivatives and finally discuss the opportunities, limitations, and challenges in this encouraging field.


2021 ◽  
Vol 22 (22) ◽  
pp. 12455
Author(s):  
Torki A. Zughaibi ◽  
Mohd Suhail ◽  
Mohammad Tarique ◽  
Shams Tabrez

Cancer is, globally, one of the main causes of death. Even though various therapies are available, they are still painful because of their adverse side effects. Available treatments frequently fail due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemotherapy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies have suggested small dietary molecules as complementary treatments for cancer patients. Different components of herbal/edible plants, known as flavonoids, have recently garnered attention due to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory, anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown anticancer activity by affecting different signaling cascades. This article summarizes the key progress made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR pathway in various cancers.


1972 ◽  
Author(s):  
Cornelis Bakker ◽  
Albert S. Carlin ◽  
Robert Heaton ◽  
Reese T. Jones ◽  
Theodore X. Barber
Keyword(s):  

2019 ◽  
Author(s):  
Jean-Louis Reymond ◽  
Mahendra Awale ◽  
Daniel Probst ◽  
Alice Capecchi

<p>Seven million of the currently 94 million entries in the PubChem database break at least one of the four Lipinski constraints for oral bioavailability, 183,185 of which are also found in the ChEMBL database. These non-Lipinski PubChem (NLP) and ChEMBL (NLC) subsets are interesting because they contain new modalities that can display biological properties not accessible to small molecule drugs. Unfortunately, the current search tools in PubChem and ChEMBL are designed for small molecules and are not well suited to explore these subsets, which therefore remain poorly appreciated. Herein we report MXFP (macromolecule extended atom-pair fingerprint), a 217-D fingerprint tailored to analyze large molecules in terms of molecular shape and pharmacophores. We implement MXFP in two web-based applications, the first one to visualize NLP and NLC interactively using Faerun (http://faerun.gdb.tools/), the second one to perform MXFP nearest neighbor searches in NLP (http://similaritysearch.gdb.tools/). We show that these tools provide a meaningful insight into the diversity of large molecules in NLP and NLC. The interactive tools presented here are publicly available at http://gdb.unibe.ch and can be used freely to explore and better understand the diversity of non-Lipinski molecules in PubChem and ChEMBL.</p>


2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Studies of animal locomotion are grounded in an understanding of the physical principles that govern how animals move and properties of the media through which they move. These studies, in turn, explain why certain biological devices, such as a wing or a fin, share features that have evolved for movement within their particular fluid environments. In this chapter, we examine the role of the environment and the fundamentals of loading and forces in animal mechanics. We offer a quick review of scaling analyses as well as the key dimensions and units used in this book to assist with your appreciation of the information.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 508
Author(s):  
Sara Silva ◽  
António J. Almeida ◽  
Nuno Vale

Parkinson’s disease (PD) affects around ten million people worldwide and is considered the second most prevalent neurodegenerative disease after Alzheimer’s disease. In addition, there is a higher risk incidence in the elderly population. The main PD hallmarks include the loss of dopaminergic neurons and the development of Lewy bodies. Unfortunately, motor symptoms only start to appear when around 50–70% of dopaminergic neurons have already been lost. This particularly poses a huge challenge for early diagnosis and therapeutic effectiveness. Actually, pharmaceutical therapy is able to relief motor symptoms, but as the disease progresses motor complications and severe side-effects start to appear. In this review, we explore the research conducted so far in order to repurpose drugs for PD with the use of nanodelivery systems, alternative administration routes, and nanotheranostics. Overall, studies have demonstrated great potential for these nanosystems to target the brain, improve drug pharmacokinetic profile, and decrease side-effects.


2021 ◽  
Vol 186 ◽  
pp. 109025
Author(s):  
João Humberto Dias Campos ◽  
Meiry Edivirges Alvarenga ◽  
Maykon Alves Lemes ◽  
José Antônio do Nascimento Neto ◽  
Freddy Fernandes Guimarães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document