scholarly journals Effect of changes in supply voltage on power consumption of digital CMOS delay lines

2016 ◽  
Vol 4 (4) ◽  
pp. 118-121
Author(s):  
Pankaj Prajapati ◽  
Dr. Shyam Akashe

In the beginning of the last decade, battery-powered hand-held devices such as mobile phones and laptop computers emerged. For that application we have to design a device which will consume minimum amount of energy. For that reason in this article we focused on power consumption and how to calculate the power. In this paper, an analysis of different delay lines based on CMOS architecture has been done. The effect of supply voltage on digital delay lines has been analysed as how supply voltage affected the value of power consumption of the digital delay line. After the analysis of those performance parameters, the trade-off has been made for better performance of delay lines.

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 860
Author(s):  
Shao-Ku Kao

This paper proposes an all-digital duty cycle corrector with synchronous fast locking, and adopts a new quantization method to effectively produce a phase of 180 degrees or half delay of the input clock. By taking two adjacent rising edges input to two delay lines, the total delay time of the delay line is twice the other delay line. This circuit uses a 0.18 μm CMOS process, and the overall chip area is 0.0613 mm2, while the input clock frequency is 500 MHz to 1000 MHz, and the acceptable input clock duty cycle range is 20% to 80%. Measurement results show that the output clock duty cycle is 50% ± 2.5% at a supply voltage of 1.8 V operating at 1000 MHz, the power consumed is 10.1 mW, with peak-to-peak jitter of 9.89 ps.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Thi Thuy Pham ◽  
Dongmin Kim ◽  
Seo-Hyeong Jeong ◽  
Junghyup Lee ◽  
Donggu Im

This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wake-up receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 μW from a 1.2 V supply voltage.


2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-25
Author(s):  
Dat Tran ◽  
Christof Teuscher

Emerging memcapacitive nanoscale devices have the potential to perform computations in new ways. In this article, we systematically study, to the best of our knowledge for the first time, the computational capacity of complex memcapacitive networks, which function as reservoirs in reservoir computing, one of the brain-inspired computing architectures. Memcapacitive networks are composed of memcapacitive devices randomly connected through nanowires. Previous studies have shown that both regular and random reservoirs provide sufficient dynamics to perform simple tasks. How do complex memcapacitive networks illustrate their computational capability, and what are the topological structures of memcapacitive networks that solve complex tasks with efficiency? Studies show that small-world power-law (SWPL) networks offer an ideal trade-off between the communication properties and the wiring cost of networks. In this study, we illustrate the computing nature of SWPL memcapacitive reservoirs by exploring the two essential properties: fading memory and linear separation through measurements of kernel quality. Compared to ideal reservoirs, nanowire memcapacitive reservoirs had a better dynamic response and improved their performance by 4.67% on three tasks: MNIST, Isolated Spoken Digits, and CIFAR-10. On the same three tasks, compared to memristive reservoirs, nanowire memcapacitive reservoirs achieved comparable performance with much less power, on average, about 99× , 17×, and 277×, respectively. Simulation results of the topological transformation of memcapacitive networks reveal that that topological structures of the memcapacitive SWPL reservoirs did not affect their performance but significantly contributed to the wiring cost and the power consumption of the systems. The minimum trade-off between the wiring cost and the power consumption occurred at different network settings of α and β : 4.5 and 0.61 for Biolek reservoirs, 2.7 and 1.0 for Mohamed reservoirs, and 3.0 and 1.0 for Najem reservoirs. The results of our research illustrate the computational capacity of complex memcapacitive networks as reservoirs in reservoir computing. Such memcapacitive networks with an SWPL topology are energy-efficient systems that are suitable for low-power applications such as mobile devices and the Internet of Things.


2009 ◽  
Vol 18 (03) ◽  
pp. 487-495 ◽  
Author(s):  
VINCENZO STORNELLI ◽  
GIUSEPPE FERRI ◽  
KING PACE

This work presents a single chip integrated pulse generator-modulator to be utilized in a short range wireless radio sensors remote control applications. The circuit, which can generate single pulses, modulated in BPSK, OOK, PAM, and also PPM, has been developed in a standard CMOS technology (AMS 0.35 μm). Typical pulse duration is about 1 ns while pulse repetition frequency is until 200 MHz (5 ns "chip" time). The operating supply voltage is ± 2.5 V, while the whole power consumption is about 15 mW. Post-layout parametric and corner analyses have confirmed the theoretical expectations.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zigang Dong ◽  
Xiaolin Zhou ◽  
Yuanting Zhang

We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the supply voltage and the total power consumption are significantly reduced. The novel log-companding amplifier was designed using a 0.18 μm CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data. The proposed amplifier operates from a 0.8 V supply voltage, shows a 6.3 μA maximum output current range, and has a 6 μW power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is166.1 fA/Hz. This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.


2012 ◽  
Vol 256-259 ◽  
pp. 2373-2378
Author(s):  
Wu Shiung Feng ◽  
Chin I Yeh ◽  
Ho Hsin Li ◽  
Cheng Ming Tsao

A wide-tuning range voltage-controlled oscillator (VCO) with adjustable ground-plate inductor for ultra-wide band (UWB) application is presented in this paper. The VCO was implemented by standard 90nm CMOS process at 1.2V supply voltage and power consumption of 6mW. The tuning range from 13.3 GHz to 15.6 GHz with phase noise between -99.98 and -115dBc/Hz@1MHz is obtained. The output power is around -8.7 to -9.6dBm and chip area of 0.77x0.62mm2.


2015 ◽  
Vol 821-823 ◽  
pp. 910-913 ◽  
Author(s):  
Luigia Lanni ◽  
Bengt Gunnar Malm ◽  
Mikael Östling ◽  
Carl Mikael Zetterling

Integrated digital circuits, fabricated in a bipolar SiC technology, have been successfully tested up to 600 °C. Operated with-15 V supply voltage from 27 up to 600 °C OR-NOR gates exhibit stable noise margins of about 1 or 1.5 V depending on the gate design, and increasing delay-power consumption product in the range 100 - 200 nJ. In the same temperature range an oscillation frequency of about 1 MHz is also reported for an 11-stage ring oscillator.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Neeta Pandey ◽  
Bharat Choudhary ◽  
Kirti Gupta ◽  
Ankit Mittal

This paper proposes new positive feedback source coupled logic (PFSCL) tristate buffers suited to bus applications. The proposed buffers use switch to attain high impedance state and modify the load or the current source section. An interesting consequence of this is overall reduction in the power consumption. The proposed tristate buffers consume half the power compared to the available switch based counterpart. The issues with available PFSCL tristate buffers based bus implementation are identified and benefits of employing the proposed tristate buffer topologies are put forward. SPICE simulation results using TSMC 180 nm CMOS technology parameters are included to support the theoretical formulations. The performance of proposed tristate buffer topologies is examined on the basis of propagation delay, output enable time, and power consumption. It is found that one of the proposed tristate buffer topology outperforms the others in terms of all the performance parameters. An examination of behavior of available and the proposed PFSCL tristate buffer topologies under parameter variations and mismatch shows a maximum variation of 14%.


2003 ◽  
Vol 1 ◽  
pp. 223-228
Author(s):  
C. Schlachta ◽  
M. Glesner

Abstract. One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.


Sign in / Sign up

Export Citation Format

Share Document