scholarly journals Monitoring the reliability of integrated circuits protection against Trojans: encoding and decoding of combinational structures

Informatics ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. 7-17
Author(s):  
L. A. Zolotorevich ◽  
V. A. Ilyinkov

Integrated circuits, systems on a chip are the key links in various industrial systems and state defense systems. The emergence of counterfeit integrated circuits, problems of piracy, overproduction, unauthorized interference in the design of microcircuit, hardware Trojans require the development of methods and means of their timely detection. Trojans can be introduced into the integrated circuits structure both on the development stage and during the production process, including the stages of specification, design, verification and manufacturing. The inclusion of additional elements in the integrated circuits structure jeopardizes the functional suitability and reliability of the system as a whole. For the purpose of hardware protection of projects, the methods of hardware coding are currently used.The paper discusses the features and reliability of logical coding of combinational circuits. An algorithm for cracking the code of combinational circuits is proposed, based on the description of encoded structure by the resolution function and reducing the problem to SAT CNF. The initial data for decoding the structure of a digital device is the structural implementation of encoded circuit, obtained, for example, by reverse engineering (prototype design), as well as an activated physical sample of an integrated circuit, when into protected from unauthorized access memory the correct key value is loaded. This sample can be used as a black box model. The main idea of breaking a key is to solve a problem without research on a large interval of values of input and output variables.

2016 ◽  
Vol 858 ◽  
pp. 908-912 ◽  
Author(s):  
David J. Spry ◽  
Philip G. Neudeck ◽  
Liang Yu Chen ◽  
Dorothy Lukco ◽  
Carl W. Chang ◽  
...  

Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC’s with two levels of metal interconnect capable of prolonged operation at 500 °C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 °C. A 3-stage oscillator functioned for over 3000 hours at 500 °C in air ambient. Improved reproducibility remains to be accomplished.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


1997 ◽  
Vol 473 ◽  
Author(s):  
David R. Clarke

ABSTRACTAs in other engineered structures, fracture occasionally occurs in integrated microelectronic circuits. Fracture can take a number of forms including voiding of metallic interconnect lines, decohesion of interfaces, and stress-induced microcracking of thin films. The characteristic feature that distinguishes such fracture phenomena from similar behaviors in other engineered structures is the length scales involved, typically micron and sub-micron. This length scale necessitates new techniques for measuring mechanical and fracture properties. In this work, we describe non-contact optical techniques for probing strains and a microscopic “decohesion” test for measuring interface fracture resistance in integrated circuits.


2000 ◽  
Vol 631 ◽  
Author(s):  
J. G. Fleming ◽  
E. Chow ◽  
S.-Y. Lin

ABSTRACTResonance Tunneling Diodes (RTDs) are devices that can demonstrate very highspeed operation. Typically they have been fabricated using epitaxial techniques and materials not consistent with standard commercial integrated circuits. We report here the first demonstration of SiO2-Si-SiO2 RTDs. These new structures were fabricated using novel combinations of silicon integrated circuit processes.


Author(s):  
Mark Kimball

Abstract This article presents a novel tool designed to allow circuit node measurements in a radio frequency (RF) integrated circuit. The discussion covers RF circuit problems; provides details on the Radio Probe design, which achieves an input impedance of 50Kohms and an overall attenuation factor of 0 dB; and describes signal to noise issues in the output signal, along with their improvement techniques. This cost-effective solution incorporates features that make it well suited to the task of differential measurement of circuit nodes within an RF IC. The Radio Probe concept offers a number of advantages compared to active probes. It is a single frequency measurement tool, so it complements, rather than replaces, active probes.


Author(s):  
Carl Nail

Abstract To overcome the obstacles in preparing high-precision cross-sections of 'blind' bond wires in integrated circuits, this article proposes a different technique that generates reliable, repeatable cross-sections of bond wires across most or all of their lengths, allowing unencumbered and relatively artifact-free analysis of a given bond wire. The basic method for cross-sectioning a 'blind' bond wire involves radiographic analysis of the sample and metallographic preparation of the sample to the plane of interest. This is followed by tracking the exact location of the plane on the original radiograph using a stereomicroscope and finally darkfield imaging in which the wire is clearly visible with good resolution.


Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


Author(s):  
Fenglei Du ◽  
Greg Bridges ◽  
D.J. Thomson ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
...  

Abstract With the ever-increasing density and performance of integrated circuits, non-invasive, accurate, and high spatial and temporal resolution electric signal measurement instruments hold the key to performing successful diagnostics and failure analysis. Sampled electrostatic force microscopy (EFM) has the potential for such applications. It provides a noninvasive approach to measuring high frequency internal integrated circuit signals. Previous EFMs operate using a repetitive single-pulse sampling approach and are inherently subject to the signal-to-noise ratio (SNR) problems when test pattern duty cycle times become large. In this paper we present an innovative technique that uses groups of pulses to improve the SNR of sampled EFM systems. The approach can easily provide more than an order-ofmagnitude improvement to the SNR. The details of the approach are presented.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


Sign in / Sign up

Export Citation Format

Share Document