scholarly journals Effect of Mesh Type on Numerical Computation of Aerodynamic Coefficients of NACA 0012 Airfoil

Author(s):  
Mostafa Abobaker ◽  
Sogair Addeep ◽  
Lukmon O Afolabi ◽  
Abdulhafid M Elfaghi

Mesh type and quality play a significant role in the accuracy and stability of the numerical computation. A computational method for two-dimensional subsonic flow over NACA 0012 airfoil at angles of attack from 0o to 10o and operating Reynolds number of 6×106 is presented with structured and unstructured meshes. Steady-state governing equations of continuity and momentum conservation are solved and combined with k-v shear stress transport (SST-omega) turbulence model to obtain the flow. The effect of structured and unstructured mesh types on lift and drag coefficients are illustrated. Calculations are done for constant velocity and a range of angles of attack using Ansys Fluent CFD software. The results are validated through a comparison of the predictions and experimental measurements for the selected airfoil. The calculations showed that the structured mesh results are closer to experimental data for this airfoil and under studied operating conditions.

MRS Advances ◽  
2017 ◽  
Vol 2 (61) ◽  
pp. 3759-3764
Author(s):  
M. Ramírez-Argáez ◽  
D. Abreú López ◽  
C. González Rivera

ABSTRACTRecent studies on aluminum degassing [1, 2] show that although the impeller speed and the gas flow rate are important process variables in terms of the productivity and operational costs, the impeller design is also a key design parameter influencing the productivity and the quality of the aluminum in foundry shops. In this work, an improved design of an impeller is tested through a water physical model and mathematical modeling and its performance is compared against commercial designs of impellers. A full-scale water physical model of a batch aluminum degassing unit was used to test the impellers by using the same operating conditions (580 rpm and 40 liters per minute) and by performing deoxidation from water by purging nitrogen into the water saturated with oxygen (similar to the dehydrogenation). A mathematical model based on first principles of mass and momentum conservation equations was developed and solved numerically in the commercial CFD code ANSYS Fluent to describe the hydrodynamics of the system with the objective of explaining the deoxidation kinetics observed in the experiments. It has been found that the new impeller design shows a better performance than the commercial designs in terms of degassing kinetics for the conditions used in this study, which is explained since the new design promotes a flow dynamics that increases the pumping effect, creating a bigger pressure drop and fluid flow patterns which help to drag and distribute more evenly the bubbles in the entire ladle than the commercial designs.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Mithinga Basumatary ◽  
Agnimitra Biswas ◽  
Rahul Dev Misra

Abstract A combined lift and drag (CLD) Savonius water turbine is an advanced form of Savonius water turbine that has higher efficiency than the latter. However, its detailed hydrodynamic performance optimization is still unexplored, which is important for its possible future commercialization. The objective of the present work is to perform a detailed hydrodynamic study for performance optimization of the CLD Savonius water turbine at low water speed (characteristic of river stream current) under different design and operating conditions. A parametric optimization using orthogonal experiments is first done to obtain the optimized values of all the contributing design parameters. It is then followed by a detailed computational fluid dynamics (CFD) investigation using ansys fluent software to optimize the hydrodynamic performance of the turbine at the selected design conditions under different operating tip speed ratios (TSRs). Detailed fluidic behaviors including boundary layer features, blade loading, and vorticity structures of the turbine are explored to obtain important performance insights, and power curves of the improved CLD design are also obtained. It is found that the optimized CLD Savonius water turbine has higher hydrodynamic performance than the earlier design of this turbine with a maximum coefficient of power obtained as 0.29 at TSR 0.8.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 72-82
Author(s):  
Mostafa Abobaker ◽  
Sogair Addeep ◽  
Abdulhafid M. Elfaghi

Possible interference effects of the wind tunnel walls play an important role especially for measurements in closed-wall test sections. In this study, a numerical analysis of two-dimensional subsonic flow over a NACA 0012 airfoil at different computational domain heights, angles of attack from 0o to 10o, and operating Reynolds number of 6×106 is presented. The work highlights the role of computational fluid dynamics (CFD) in the investigation of wind tunnel wall effect on lift curve slope correction factor (Ka). The flow solution is obtained using Ansys Fluent software by solving the steady-state continuity and momentum governing equations combined with turbulence model k-v shear stress transport (SST-K?). The numerical results are validated by comparing with the available experimental measurements. Calculations show that the lift curve slope correction results are very close to the published data.


2014 ◽  
Vol 664 ◽  
pp. 111-116 ◽  
Author(s):  
R.K. Ganesh Ram ◽  
Yashaan Nari Cooper ◽  
Vishank Bhatia ◽  
R. Karthikeyan ◽  
C. Periasamy

CFD method is inexpensive method of analysis of flow over aerodynamic structure. It incorporates mathematical relations and algorithms to analyze and solve the problems regarding fluid flow. CFD analysis of an airfoil produces results such as lift and drag forces which determines the ability of an airfoil. Optimization of an airfoil involves improving the design of the airfoil in order to manipulate the lift and drag coefficients according to the requirements. It is a very common method used in all fields of engineering. MATLAB is a numerical computing environment which supports interface with other software. XFoil is airfoil analysis software which calculates the lift and drag characteristics for different Reynolds numbers, Mach numbers and angles of attack. MALAB is interfaced with XFoil and the optimization of NACA 0012 airfoil is done and the results are analyzed. The performance of optimized air foil is analyzed using ANSYS FLUENT software.


CFD letters ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 29-48
Author(s):  
Aideal Czar Zohary ◽  
Waqar Asrar ◽  
Mohammed Aldheeb

Progressive advancements in small to medium-sized fixed-wing UAVs call for prototype designing to be fast, accurate, and economical. This requires the numerical assessment of airfoil performance to be based on high fidelity replication of wind tunnel data. Furthermore, integration of drag reduction techniques is attractive as improvements in endurance, payload capacity and reduction in carbon footprints can be attained. Since a variety of suitable airfoil geometries are currently available for this application, selecting a fitting candidate can be difficult therefore risking potential gain in efficiency. The aim of this paper is to assist in resolving this issue by investigating the variation in pressure drag and its distribution with respect to the type of airfoil geometry, angle of attack, and the contribution of pressure towards the total drag at low Reynolds numbers. The airfoils selected in this study comprises of the NACA 4415, FX 61-184, E420 and S1223 which are preferred for subsonic UAV applications in addition to having the NACA 0012 serving as a standard profile. Performance of the S1223 airfoil was examined at a chord-based Reynolds number of 0.3 x 106 with the remaining airfoils at 1.0 x 106 for a range of angle of attack of around 0-10°. The unsteady 3-equation Intermittency SST model from ANSYS FLUENT 2020 was utilized with gradual reduction of timestep from 0.001s, 0.0005s, 0.00025s and 0.0001s. Experimental lift and drag validation across the airfoils generally suggest that the transitional model regularly outperforms XFOIL. Among the selection, concave airfoils such as the E420 and S1223 excel in delivering high lift at the expense of an increase in drag. Evaluation of the l/d ratio alone may underestimate their potential. Hence, further studies should focus on the implementation of drag reduction techniques on concave airfoils to enhance their performance. At the maximum tested angle of attack, the E420 reaches a cl value of 2.09 and S1223 at 1.98 while the FX 61-184 only at 1.57 and NACA 4415 at 1.36.


2014 ◽  
Vol 1611 ◽  
pp. 19-24
Author(s):  
J. A. Delgado-Álvarez ◽  
J. G. Perea-Zurita ◽  
A. Antonio-Morales ◽  
C. González-Rivera ◽  
M. A. Ramírez-Argáez

ABSTRACTA study of the fluid flow in a mixing device proposed to dissolve alloying elements in iron baths is performed through a mathematical model in order to predict the best operating conditions for a proper melting/dissolution of solid alloying particles. The mathematical model consists in the mass and momentum conservation equations (continuity and Turbulent Navier-Stokes equations), and the standard two k-epsilon turbulence model. The model is numerically solved in transient regime with the Volume of Fluid algorithm (VOF) to calculate the vortex shape. VOF is built-in the CFD (Computational Fluid Dynamics) software ANSYS FLUENT 14. A flow of metal enters tangentially in the mixing chamber of the proposed mixing device (taken from an open patent) to generate a vortex. The shape and height of the vortex reached in this chamber depends on several design variables, but in this work only the presence or absence of a barrier in the device is analyzed. Results are obtained on the vortex sizes and shapes, liquid flow patterns, turbulent structure, residence times of the particles of alloying elements added to the melt and mixing times (Residence time distribution curves) of two devices: one with a barrier and the other without this barrier. It is found that the presence of the barrier in the device increases turbulence, destroys the vortex, decreases the residence time of the particles, and decreases the volume of fluid in the device. Most of the features of the barrier are detrimental for mixing and inhibits melting/dissolution of the alloying elements. Then, it is suggested a device without the presence of barrier for better performance.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


Author(s):  
K. R. Mrinal ◽  
Md. Hamid Siddique ◽  
Abdus Samad

A progressive cavity pump (PCP) is a positive displacement pump and has been used as an artificial lift method in the oil and gas industry for pumping fluid with solid content and high viscosity. In a PCP, a single-lobe rotor rotates inside a double-lobe stator. Articles on computational works for flows through a PCP are limited because of transient behavior of flow, complex geometry and moving boundaries. In this paper, a 3D CFD model has been developed to predict the flow variables at different operating conditions. The flow is considered as incompressible, single phase, transient, and turbulent. The dynamic mesh model in Ansys-Fluent for the rotor mesh movement is used, and a user defined function (UDF) written in C language defines the rotor’s hypocycloid path. The mesh deformation is done with spring based smoothing and local remeshing technique. The computational results are compared with the experiment results available in the literature. Thepump gives maximum flowrate at zero differential pressure.


2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.


Author(s):  
Obai Younis ◽  
Reem Ahmed ◽  
Ali Mohammed Hamdan ◽  
Dania Ahmed

This study aims to optimize the velocity of ring shape parameter for designing the nozzles using computational fluid dynamics (CFD) and investigated the flow in nozzles using ANSYS, Inc. simulation software. The model geometries were defined using ANSYS FLUENT-Design Modeler platform. All nozzles were designed on unstructured triangular elements comprising of 1200000 mesh nodes. The differential governing equations were applied in ANSYS FLUENT based on a finite volume method. The distance and dimensions of ring location significantly influence the velocity of water during flow where the maximum velocity at double rings reduces the surface area at distance of 7mm and 15mm and 2x2 mm dimensions. Considering 8, 10, and 12 bar liner proportions, there was an increase in the velocity at maximum points in ring shapes.


Sign in / Sign up

Export Citation Format

Share Document