scholarly journals The impact of oxidative stress on the neurotoxic effect of acetaminophen

2019 ◽  
Vol 59 (9) ◽  
pp. 106-109
Author(s):  
Ksenia A. Zagorodnikova ◽  

Paracetamol (acetaminophen, APAP) is a commonly-used antipyretic and analgesic. However, there have been reports indicating possible link between its use in pregnancy and impaired neuropsychic development in children. A number of prospective studies of the possible negative effect of acetaminophen on the development of a child after his mother took this drug during pregnancy, as well as the results of studies on glioma cells and neurons in murine cortex, may indicate presence of the neurotoxic effect of acetaminophen. It is currently unclear if paracetamol itself being pharmacologically active neurotropic substance, or its metabolites, one of which – NAPQI (N-acetyl-p-benzoquinone imine) known by its toxic effects in mitochindria, play the most significant role in proposed neurotoxicity. Therefore it seems important to study each metabolite separately. The ability of acetaminophen(paracetamol) in concentrations of 1 mg/ml and 2 mg/ml to reduce cell viability was shown on cells of the PC12 neuronal line using MTT-method, which is based on the ability of mitochondria of viable cells to restore formazan 3-(4,5-dimethylthiazole)-2,5-diphenyl-2-tetrazolium bromide (MTT). Concentrations of 0.125 mg/ml, 0.25 mg/ml and 0.5 mg/ml had no similar impact on cell culture viability. In addition, the impact of hydrogen peroxide (as an inducer of oxidative stress) on the neurotoxic effect of acetaminophen was studied. We demonstrated that in the presence of 0.3 mM or 0.5 mM hydrogen peroxide and acetaminophen in concentrations of 1 mg/ml and 2 mg/ml reliably reduced the percentage of surviving cells. We showed that the decrease of the viability of the cells of the PC12 neuronal line is obvious only after exposure to high concentrations of acetaminophen, especially in the presence of hydrogen peroxide, which means that neurotoxic effect is not likely to occur in vivo.

Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 15-24
Author(s):  
Magdalena Matić ◽  
◽  
Rosemary Vuković ◽  
Karolina Vrandečić ◽  
Ivna Štolfa Čamagajevac ◽  
...  

During cultivation, wheat is exposed to several abiotic and/or biotic stress conditions that may adversely impact the wheat yield and quality. The impact of abiotic stress caused by nitrogen deficiency and biotic stress caused by phytopathogenic fungus Fusarium culmorum on biomarkers of oxidative stress in the flag leaf of nine winter wheat varieties (Ficko, U-1, Galloper, BC Mandica, BC Opsesija, Ingenio, Isengrain, Felix, and Bezostaya-1) was analyzed in this study. Hydrogen peroxide concentration and lipid peroxidation level were measured as indicators of oxidative stress, while the antioxidant response was determined by measuring the concentration of phenolic compounds and activities of antioxidant enzymes. Wheat variety and nitrogen treatment had a significant effect on all examined biomarkers of oxidative stress in the flag leaf, while the impact of Fusarium treatment was less pronounced. The most significant impact on the measured stress biomarkers had a low nitrogen level, which mainly increased hydrogen peroxide concentration and lipid peroxidation level and decreased activities of antioxidant enzymes in most varieties. The obtained results were discussed and compared with the previous study in which biochemical analyzes were performed on the wheat spike. There was no significant strong correlation between flag leaf and spike response in the measured parameters, which, in addition to the variety-specific response, also indicates a tissue-specific antioxidant response.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3216
Author(s):  
Maryvonne Ardourel ◽  
Chloé Felgerolle ◽  
Arnaud Pâris ◽  
Niyazi Acar ◽  
Khaoula Ramchani Ben Othman ◽  
...  

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


2020 ◽  
Author(s):  
Ramona Meanti ◽  
Laura Rizzi ◽  
Elena Bresciani ◽  
Laura Molteni ◽  
Vittorio Locatelli ◽  
...  

AbstractHexarelin, a synthetic hexapeptide, protects cardiac and skeletal muscles by inhibiting apoptosis, both in vitro and in vivo. Moreover, evidence suggests that hexarelin could have important neuroprotective bioactivity.Oxidative stress and the generation of free radicals has been implicated in the etiologies of several neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and multiple sclerosis. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance the formation of other reactive oxygen species.The aim of this study was to examine the inhibitory influence of hexarelin on H2O2-induced apoptosis in Neuro-2A cells, a mouse neuroblastoma cell line. Our results indicate that H2O2 reduced the viability of Neuro-2A cells in a dose-related fashion. Furthermore, H2O2 induced significant changes in the morphology of Neuro-2A cells, reflected in the formation of apoptotic cell bodies, and an increase of nitric oxide (NO) production. Hexarelin effectively antagonized H2O2 oxidative damage to Neuro-2A cells as indicated by improved cell viability, normal morphology and reduced nitrite (NO2−) release. Hexarelin treatment of Neuro-2A cells also reduced mRNA levels of caspases−3 and −7 and those of the pro-apoptotic molecule Bax; by contrast, hexarelin treatment increased anti-apoptotic Bcl-2 mRNA levels. Hexarelin also reduced MAPKs phosphorylation induced by H2O2 and concurrently increased p-Akt protein expression.In conclusion, our results identify several neuroprotective and anti-apoptotic effects of hexarelin. These properties suggest that further investigation of hexarelin as a neuroprotective agent in an investigational and therapeutic context are merited.


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 639-658
Author(s):  
Nicolas Aranciaga ◽  
James D Morton ◽  
Debra K Berg ◽  
Jessica L Gathercole

Cow subfertility is a multi-factorial problem in many countries which is only starting to be unravelled. Molecular biology can provide a substantial source of insight into its causes and potential solutions, particularly through large scale, untargeted omics approaches. In this systematic review, we set out to compile, assess and integrate the latest proteomic and metabolomic research on cow reproduction, specifically that on the female reproductive tract and early embryo. We herein report a general improvement in technical standards throughout the temporal span examined; however, significant methodological limitations are also identified. We propose easily actionable avenues for ameliorating these shortcomings and enhancing the reach of this field. Text mining and pathway analysis corroborate the relevance of proteins and metabolites related to the triad oxidative stress-inflammation-disease on reproductive function. We envisage a breakthrough in cattle reproductive molecular research within the next few years as in vivo sample techniques are improved, omics analysis equipment becomes more affordable and widespread, and software tools for single- and multi-omics data processing are further developed. Additional investigation of the impact of local oxidative stress and inflammation on fertility, both at the local and systemic levels, is key towards realising the full potential of this field.


2001 ◽  
Vol 354 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Jeremy P. E. SPENCER ◽  
Hagen SCHROETER ◽  
Gunter KUHNLE ◽  
S. Kaila S. SRAI ◽  
Rex M. TYRRELL ◽  
...  

There is considerable current interest in the cytoprotective effects of natural antioxidants against oxidative stress. In particular, epicatechin, a major member of the flavanol family of polyphenols with powerful antioxidant properties in vitro, has been investigated to determine its ability to attenuate oxidative-stress-induced cell damage and to understand the mechanism of its protective action. We have induced oxidative stress in cultured human fibroblasts using hydrogen peroxide and examined the cellular responses in the form of mitochondrial function, cell-membrane damage, annexin-V binding and caspase-3 activation. Since one of the major metabolites of epicatechin in vivo is 3′-O-methyl epicatechin, we have compared its protective effects with that of epicatechin. The results provide the first evidence that 3′-O-methyl epicatechin inhibits cell death induced by hydrogen peroxide and that the mechanism involves suppression of caspase-3 activity as a marker for apoptosis. Furthermore, the protection elicited by 3′-O-methyl epicatechin is not significantly different from that of epicatechin, suggesting that hydrogen-donating antioxidant activity is not the primary mechanism of protection.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Miao Wang ◽  
Jane Stubbe ◽  
Eric Lee ◽  
Wenliang Song ◽  
Emanuela Ricciotti ◽  
...  

Microsomal (m) prostaglandin (PG) E 2 synthase(S)-1, an enzyme that catalyzes the isomerization of the cyclooxygenase (COX) product, PGH 2 , into PGE 2 , is a major source of PGE 2 in vivo . mPGES-1 deletion in mice was found to modulate experimentally evoked pain and inflammation and atherogenesis is retarded in mPGES-1 knockout (KO) mice. The impact of mPGES-1 deletion on formation of angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) was studied in mice lacking the low density lipoprotein receptor (LDLR −/− ). AngII infusion increased aortic macrophage recruitment and nitrotyrosine staining while upregulating both mPGES-1 and COX-2 and urinary excretion of the major metabolite of PGE 2 (PGE-M). Deletion of mPGES-1 decreased both the incidence and severity of AAA and depressed excretion of both PGE-M and 8, 12-iso-iPF 2a -VI, which reflects lipid peroxidation in vivo . While Ang II infusion augmented prostaglandin biosynthesis, deletion of mPGES-1 resulted in rediversion to PGD 2 , reflected by its major urinary metabolite. However, deletion of the PGD 2 receptor, DP1, did not affect AAA in Ang II infused LDLR −/− mice. These observations indicate that deletion of mPGES-1 protects against AAA formation by AngII in hyperlipidemic mice, perhaps by decreasing oxidative stress. Inhibition of mPGES-1 may represent an effective treatment to limit aneurysm occurrence and expansion.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jin-Jie Zhang ◽  
Xiao-Rong Shi ◽  
Wen-Wen Lv ◽  
Xiao-Long Zhou ◽  
Ying-Dong Sun ◽  
...  

Oxidative stress (OS) is a crucial factor influencing the development of Parkinson’s disease (PD). Here we first reported that Lindleyin (Lin), one of the major components of rhubarb, possessed neuroprotective effects against H2O2-induced SH-SY5Y cell injury and MPTP-induced PD of C57BL/6 mice. The results showed that Lin can decrease cell death and apoptotic rate induced by H2O2 through inhibiting mitochondrial apoptotic pathway and increasing the activities of SOD, GSH-Px, and CAT as well as decreasing the level of MDA. In addition, in vivo studies showed that oral administration of Lin (5 or 20 mg/kg) showed significant change in motor function deficits, antioxidant enzyme activities, apoptotic pathway, and tyrosine hydroxylase expression. Our results reveal that Lin might be a promising anti-PD agent by reducing OS and apoptosis.


2003 ◽  
Vol 185 (7) ◽  
pp. 2203-2209 ◽  
Author(s):  
Anu Wallecha ◽  
Jason Correnti ◽  
Vincent Munster ◽  
Marjan van der Woude

ABSTRACT OxyR is a DNA binding protein that differentially regulates a cell's response to hydrogen peroxide-mediated oxidative stress. We previously reported that the reduced form of OxyR is sufficient for repression of transcription of agn43 from unmethylated template DNA, which is essential for deoxyadenosine methylase (Dam)- and OxyR-dependent phase variation of agn43. Here we provide evidence that the oxidized form of OxyR [OxyR(ox)] also represses agn43 transcription. In vivo, we found that exogenous addition of hydrogen peroxide, sufficient to oxidize OxyR, did not affect the expression of agn43. OxyR(ox) repressed in vitro transcription but only from an unmethylated agn43 template. The −10 sequence of the promoter and three Dam target sequences were protected in an in vitro DNase I footprint assay by OxyR(ox). Furthermore, OxyR(ox) bound to the agn43 regulatory region DNA with an affinity similar to that for the regulatory regions of katG and oxyS, which are activated by OxyR(ox), indicating that binding at agn43 can occur at biologically relevant concentrations. OxyR-dependent regulation of Ag43 expression is therefore unusual in firstly that OxyR binding at agn43 is dependent on the methylation state of Dam target sequences in its binding site and secondly that OxyR-dependent repression appears to be independent of hydrogen-peroxide mediated oxidative stress and the oxidation state of OxyR.


2008 ◽  
Vol 36 (05) ◽  
pp. 981-988 ◽  
Author(s):  
Elaine Lin ◽  
Yong Wang ◽  
Sangeeta Mehendale ◽  
Shi Sun ◽  
Chong-Zhi Wang ◽  
...  

Hyperglycemia in diabetic conditions may cause oxidative stress in pancreatic ß-cells, leading to their dysfunction and insulin resistance within peripheral tissues. Previous studies suggest that American ginseng berry extract may have hypoglycemic effects, as well as offer antioxidant protection. We examined effects of American ginseng berry extract and ginsenoside Re in a pancreatic ß-cell line, MIN-6, to determine if these two properties are related. Cells were exposed to oxidative stress via hydrogen peroxide incubation and oxidative stress was measured by oxidation of 2′,7′-dichlorofluorescin diacetate. These cells showed a concentration-related response to hydrogen peroxide at 100–500 μM. In acute conditions where cells were treated with the extract for 10 min, we observed reduced oxidant injury suggesting direct scavenging effects. Chronic incubation of cells with the extract for 48 hours also demonstrated attenuation of oxidative stress. At high concentrations, Re showed a mild antioxidant effect in MIN-6 cells. Our insulin release observations also showed that the extract may help to increase insulin secretions from the cells. Our data suggest that the observed ability of ginseng to reduce blood glucose levels may be linked to its antioxidant effects on pancreatic ß-cells.


Sign in / Sign up

Export Citation Format

Share Document