scholarly journals Comparison of beta-lactamase genes in clinical and food bacterial isolates in India

2009 ◽  
Vol 3 (08) ◽  
pp. 593-598 ◽  
Author(s):  
Mohd. Shahid ◽  
Abida Malik ◽  
Mohd. Adil ◽  
Noor Jahan ◽  
Ritu Malik

BACKGROUND: The present study aimed to determine the occurrence of human disease-causing enteric bacteria on raw vegetables, fruits, meats, and milk products sold in Indian markets. The study further aimed to analyze antibiotic resistance rates and the presence of blaCTX-M, blaTEM, blaSHV, and blaAmpC. METHODOLOGY: Twenty-three food-borne and 23 clinical isolates were compared for antibiotic resistance rates and the presence of blaCTX-M, blaTEM, blaSHV, and blaAmpC. Swabs were taken from unwashed and washed food items, as well as from some chopped food specimens, and inoculated on appropriate culture medium. Bacterial isolates were identified, antibiotic susceptibility was performed, and bla genes were detected by PCR. RESULTS: Thirty-eight bacterial isolates were obtained from the food specimens, of which 36 (94.7%) were Gram-negative and two (5.3%) were Gram-positive bacterial species. Klebsiella pneumoniae was the most prevalent (52.6%; 20/38) bacterial species isolated, followed by Citrobacter koseri (18.4%; 7/38). In food isolates, the majority of the isolates were resistant to gentamicin (33.3%) followed by amikacin (11.1%). Resistance to a third-generation cephalosporin was noticed in only 5.6% isolates. However, in clinical isolates, maximal resistance was noticed against third-generation cephalosporins followed by ofloxacin in 91.3% and 86.9% isolates, respectively, and resistance to gentamicin and amikacin was noticed in 78.3% and 52.2% isolates, respectively. The presence of blaCTX-M, blaTEM, blaSHV, and blaAmpC in clinical isolates was noticed in 52.2%, 60.9%, 21.7%, and 43.5%, respectively. None of the isolates from food showed the presence of any of the above-cited genes. CONCLUSIONS: Probably bla genes have not yet disseminated to raw-food vegetation in India.

2021 ◽  
Author(s):  
Marcia B Goldberg ◽  
Molly Paras

Salmonella, which is acquired via ingestion, is classified as nontyphoidal or typhoidal disease. Typhoidal disease is caused by S typhi or S paratyphi, and nontyphoidal disease is caused by all other serovars. Salmonella causes a range of infectious syndromes that include gastroenteritis, bacteremia, endovascular infections, and enteric fever. For immunocompromised hosts or patients with extraintestinal disease, antibiotic therapy should be provided. Effective agents often include third-generation cephalosporins and fluoroquinolones, although rates of resistance of Salmonella isolates to many antibiotics are increasing. A carrier state exists whereby patients may shed bacteria despite being asymptomatic. To eradicate the carrier state, longer courses of antibiotics and, in rare instances, surgical removal of the reservoir, which is most commonly the gallbladder, may be required.  This review contains 2 figures, 4 tables, and 24 references. Key Words: Salmonella, typhoidal, non-typhoidal, enteric fever, endovascular infection, gastroenteritis, carrier, food-borne, antibiotic resistance


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Elizabeth J. Klemm ◽  
Sadia Shakoor ◽  
Andrew J. Page ◽  
Farah Naz Qamar ◽  
Kim Judge ◽  
...  

ABSTRACT Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S. Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S. Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S. Typhi clone in Sindh, Pakistan. The XDR S. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S. Typhi observed here adds urgency to the need for typhoid prevention measures.


2013 ◽  
Vol 7 (1) ◽  
pp. 142-145 ◽  
Author(s):  
Reza Ranjbar ◽  
Ali Naghoni ◽  
Soheila Yousefi ◽  
Ali Ahmadi ◽  
Nematollah Jonaidi ◽  
...  

Background and Objectives:Salmonella is an important food-borne pathogen responsible for disease in humans and animals. The aim of this study was to investigate the genetic relationship among third generation cephalosporin-resistant Salmonella enterica strains by Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR.Methods:The study included all Salmonella isolates obtained from clinical cases in a pediatric hospital in Tehran, Iran during 2006 to 2009. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute. The genetic relationship between third generation cephalosporins-resistant Salmonella enterica strains was determined using ERIC-PCR.Results:Of 136 Salmonella enterica isolates recovered from pediatric patients, six isolates including four Salmonella enterica serotype Infantis and two Salmonella enterica serotype Enteritidis showed an extended-spectrum cephalosporins resistant phenotype. ERIC-PCR differentiated Salmonella enterica serotypes Infantis and Enteritidis into 2 distinct clusters arbitrarily named as E1 and E2. Profile E1 was found in two Salmonella enterica serotype Enteritidis isolates, and profile E2 was found in four Salmonella enterica serotype Infantis isolates.Conclusion:Extended-spectrum cephalosporins resistant Salmonella could be attributed to a few predominant serotypes including Enteritidis and Infantis in this study. Genetic analysis using ERIC-PCR showed that closely related clones are responsible for the occurrence of extended-spectrum cephalosporins resistant Salmonella infection in Tehran.


2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Jennifer P Collins ◽  
Cindy R Friedman ◽  
Meseret G Birhane ◽  
Beth E Karp ◽  
Anthony Osinski ◽  
...  

Abstract In 2017, state health departments notified the Centers for Disease Control and Prevention about 4 patients with shigellosis who experienced persistent illness after treatment with oral third-generation cephalosporins. Given increasing antibiotic resistance among Shigella, these cases highlight the need to evaluate the efficacy of oral cephalosporins for shigellosis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0242390
Author(s):  
Rosine Manishimwe ◽  
Paola M. Moncada ◽  
Marie Bugarel ◽  
H. Morgan Scott ◽  
Guy H. Loneragan

In several developing countries, studies on antimicrobial resistance among bacteria from food animals are rare mostly because of under-resourced laboratories. The objective of this study was to develop and field-test a low cost protocol to estimate the isolate- and sample-level prevalence of resistance to critically important antibiotics among Escherichia coli and Salmonella isolated from dairy cattle feces. Using a predesigned protocol, fecal samples were collected to isolate non-type-specific E. coli and Salmonella using selective media without antibiotic supplements. Besides, samples were screened for E. coli and Salmonella isolates not susceptible to third-generation cephalosporins and quinolones using selective media supplemented with cefotaxime (1.0 μg/mL) and ciprofloxacine (0.5 μg/mL), respectively. All bacterial isolates were further tested for antibiotic susceptibility using disk diffusion. Bacterial isolates not susceptible to third-generation cephalosporins were tested for extended spectrum beta-lactamase (ESBL) phenotype using the combination disk test. Molecular methods were performed on selected bacterial isolates to identify and distinguish genetic determinants associated with the observed phenotypes. Among 85 non-type-specific E. coli isolated from MacConkey agar without antibiotics, the isolate-level prevalence of resistance to tetracycline was the highest (8.2%). Among 37 E. coli recovered from MacConkey agar with cefotaxime, 56.8% were resistant ceftriaxone. Among 22 E. coli isolates recovered from MacConkey agar with ciprofloxacin, 77.3% and 54.5% were resistant to nalidixic acid and ciprofloxacin, respectively. Sixteen Salmonella were isolated and only one demonstrated any resistance (i.e., single resistance to streptomycin). Among E. coli isolates not susceptible to ceftriaxone, an AmpC phenotype was more common than an ESBL phenotype (29 versus 10 isolates, respectively). Whole genome sequencing showed that phenotypic profiles of antibiotic resistance detected were generally substantiated by genotypic profiles. The tested protocol is suited to detecting and estimating prevalence of antimicrobial resistance in bacteria isolated from food animal feces in resource-limited laboratories in the developing world.


2020 ◽  
Author(s):  
Rosine Manishimwe ◽  
Paola M. Moncada ◽  
Marie Bugarel ◽  
H. Morgan Scott ◽  
Guy H. Loneragan

AbstractThis study was conducted to develop and field-test a low cost protocol to estimate the isolate- and sample-level prevalence of resistance to critically important antibiotic drugs among Escherichia coli and Salmonella isolated from dairy cattle feces. E. coli and Salmonella were isolated from and screened on selective media, with and without antibiotics respectively. Bacterial isolates were further tested for susceptibility to a suite of antibiotics using disk diffusion. Molecular methods were performed on select bacterial isolates to identify and distinguish genetic determinants associated with the observed phenotypes. Among 85 non-type-specific E. coli randomly isolated from MacConkey agar without antibiotics, the isolate-level prevalence of resistance to tetracycline was the highest (8.2%), there was no isolate resistant to third-generation cephalosporin (0.0%) and one isolate was resistant to nalidixic acid (1.2%). Among 37 E. coli recovered from MacConkey agar with cefotaxime at 1.0µg/ml, 100% were resistant to ampicillin and 56.8% were resistant to a third-generation cephalosporin (ceftriaxone). Among 22 E. coli isolates recovered from MacConkey agar with ciprofloxacin at 0.5µg/ml, 90.9% were resistant to tetracycline whereas 77.3% and 54.5% were resistant to nalidixic acid and ciprofloxacin respectively. Sixteen Salmonella were isolated and only one demonstrated any resistance (i.e., single resistance to streptomycin). Among E. coli isolates that were either resistant or intermediate to ceftriaxone, an AmpC phenotype was more common than an extended spectrum beta-lactamase (ESBL) phenotype (29 versus 10 isolates, respectively). Among 24 E. coli isolates that were whole genome sequenced, phenotypic profiles of antibiotic resistance detected were generally substantiated by genotypic profiles. For instance, all isolates with an AmpC phenotype carried a blaCMY2 gene. The protocol used in this study is suited to detecting and estimating prevalence of antimicrobial resistance in bacteria isolated from food animal feces in resource-limited laboratories in the developing world.


2014 ◽  
Vol 143 (3) ◽  
pp. 470-477 ◽  
Author(s):  
D. BHATTACHARYA ◽  
H. BHATTACHARYA ◽  
D. S. SAYI ◽  
A. P. BHARADWAJ ◽  
M. SINGHANIA ◽  
...  

SUMMARYThis study is a part of the surveillance study on childhood diarrhoea in the Andaman and Nicobar Islands; here we report the drug resistance pattern of recent isolates ofShigellaspp. (2006–2011) obtained as part of that study and compare it with that ofShigellaisolates obtained earlier during 2000–2005. During 2006–2011, stool samples from paediatric diarrhoea patients were collected and processed for isolation and identification ofShigellaspp. Susceptibility to 22 antimicrobial drugs was tested and minimum inhibitory concentrations were determined for third-generation cephalosporins, quinolones, amoxicillin-clavulanic acid combinations and gentamicin. A wide spectrum of antibiotic resistance was observed in theShigellastrains obtained during 2006–2011. The proportions of resistant strains showed an increase from 2000–2005 to 2006–2011 in 20/22 antibiotics tested. The number of drug resistance patterns increased from 13 in 2000–2005 to 43 in 2006–2011. Resistance to newer generation fluoroquinolones, third-generation cephalosporins and augmentin, which was not observed during 2000–2005, appeared during 2006–2011. The frequency of resistance inShigellaisolates has increased substantially between 2000–2006 and 2006–2011, with a wide spectrum of resistance. At present, the option for antimicrobial therapy in shigellosis in Andaman is limited to a small number of drugs.


Author(s):  
Dabor Résière ◽  
Claude Olive ◽  
Hatem Kallel ◽  
André Cabié ◽  
Rémi Névière ◽  
...  

In Martinique, Bothrops lanceolatus snakebite, although relatively uncommon (~30 cases/year), may result in serious complications such as systemic thrombosis and local infections. Infections have been hypothesized to be related to bacteria present in the snake’s oral cavity. In this investigation, we isolated, identified, and studied the susceptibility to beta-lactams of bacteria sampled from the oral cavity of twenty-six B. lanceolatus specimens collected from various areas in Martinique. Microbiota from B. lanceolatus oral cavity was polymicrobial. Isolated bacteria belonged to fifteen different taxa; the most frequent being Aeromonas hydrophyla (present in 50% of the samples), Morganella morganii, Klebsiella pneumoniae, Bacillus spp., and Enterococcus spp. Analysis of antibiotic susceptibility revealed that 66.7% of the isolated bacteria were resistant to amoxicillin/clavulanate. In contrast, the majority of isolated bacteria were susceptible to the third-generation cephalosporins (i.e., 73.3% with cefotaxime and 80.0% with ceftazidime). Microbiota from B. lanceolatus oral cavity is polymicrobial with bacteria mostly susceptible to third-generation cephalosporins but rarely to amoxicillin/clavulanate. In conclusion, our findings clearly support that first-line antibiotic therapy in the B. lanceolatus-bitten patients, when there is evidence of infection, should include a third-generation cephalosporin rather than amoxicillin/clavulanate.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 994
Author(s):  
Xuemei Zhen ◽  
Jingchunyu Chen ◽  
Xueshan Sun ◽  
Qiang Sun ◽  
Shasha Guo ◽  
...  

The relationship between socioeconomic factors and antibiotic resistance (ABR) prevalence remains a knowledge gap in China. In this study, our aim was to examine the association between ABR prevalence and socioeconomic factors across 30 provinces in mainland China. We used two measures of level of ABR: the proportion of methicillin-resistant Staphylococcus aureus (MRSA), third-generation cephalosporin-resistant Escherichia coli (3GCREC), and third-generation cephalosporin-resistant Klebsiella pneumoniae (3GCRKP), and the aggregate resistance. The data of ABR prevalence, education, gross domestic product (GDP) per capita, out-of-pocket (OOP) health expenditure, physician density, hospital bed density, and public toilet density during 2014 and 2018 in 30 provinces in mainland China were included. We examined the association between ABR prevalence and potential contributing socioeconomic factors using panel data modeling. In addition, we explored this relationship in the eastern, central, and western economic zones. Our results indicated that GDP per capita was significantly positively correlated with ABR in mainland China and the eastern economic zone; however, significantly positive associations did not exist in the central and western economic zones. Surprisingly, both higher GDP per capita and higher OOP health expenditure were associated with a higher level of MRSA, but a lower level of 3GCREC; higher physician density was associated with a lower level of MRSA, but a higher level of 3GCREC. In addition, ABR prevalence presented a decline trend during 2014 and 2018. Our study highlights that intervention measures tackling the development and spread of ABR in mainland China must better recognize and address the importance of social and economic determinants.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Seyed Ali Bazghandi ◽  
Mohsen Arzanlou ◽  
Hadi Peeridogaheh ◽  
Hamid Vaez ◽  
Amirhossein Sahebkar ◽  
...  

Background: Drug resistance and virulence genes are two key factors for the colonization of Pseudomonas aeruginosa in settings with high antibiotic pressure, such as hospitals, and the development of hospital-acquired infections. Objectives: The objective of this study was to investigate the prevalence of drug resistance and virulence gene profiles in clinical isolates of P. aeruginosa in Ardabil, Iran. Methods: A total of 84 P. aeruginosa isolates were collected from clinical specimens of Ardabil hospitals and confirmed using laboratory standard tests. The disk diffusion method was used for antibiotic susceptibility testing and polymerase chain reaction (PCR) for the identification of P. aeruginosa virulence genes. Results: The highest and the lowest antibiotic resistance rates of P. aeruginosa strains were against ticarcillin-clavulanate (94%) and doripenem (33.3%), respectively. In addition, the frequency of multidrug-resistant (MDR) P. aeruginosa was 55.9%. The prevalence of virulence factor genes was as follows: algD 84.5%, lasB 86.9%, plcH 86.9%, plcN 86.9%, exoU 56%, exoS 51.2%, toxA 81%, nan1 13.1%, and pilB 33.3%. A significant association was observed between resistance to some antibiotics and the prevalence of virulence genes in P. aeruginosa. Conclusions: Our results revealed a high prevalence of antibiotic resistance, especially MDR, and virulence-associated genes in clinical isolates of P. aeruginosa in Ardabil hospitals. Owing to the low resistance rates against doripenem, gentamicin, and tobramycin, these antibiotics are recommended for the treatment of infections caused by highly resistant and virulent P. aeruginosa strains.


Sign in / Sign up

Export Citation Format

Share Document