Protective Effect of Solanum surattense Leaf-Extract on Blood Glucose, Oxidative Stress and Hepatic Marker Enzymes in STZ-Diabetic Rats

2007 ◽  
Vol 2 (4) ◽  
pp. 247-255 ◽  
Author(s):  
M. Sridevi . ◽  
G. Chandramohan . ◽  
K.V. Pugalendi .
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Min ◽  
Yuting Bai ◽  
Yuchen Zhang ◽  
Wei Yu ◽  
Minli Zhang ◽  
...  

Objectives. DCM has become one of the main reasons of death in diabetic patients. In this study, we aimed to explore the hawthorn leaf flavonoids (HLF) protective effect against diabetes-induced cardiac injury and the underlying mechanisms in experimental rats. Methods. Experimental diabetic model was induced by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) in rats after feeding with high-fat diet for 8 weeks. The diabetic rats received a 16-week treatment of different doses of HLF (50, 100, and 200). The morphological changes of myocardial cells were observed by light microscope; the concentration of antioxidant indicator and TNF-α and the expression of PKC-α mRNA, PKC-α, and NF-κB proteins were assessed as well. Results. STZ-induced diabetes mellitus prompted blood glucose, cardiac injury, oxidative stress, and inflammation, accompanied with suppressed body weight. On the contrary, HLF administration improved body weight and blood glucose and attenuated myocardial structural abnormalities in diabetic rats. In addition, HLF decreased MDA level and enhanced SOD activities, inhibited TNF-α expression, and downregulated PKC-α mRNA, PKC-α, and NF-κB which were induced by diabetes. Conclusions. HLF has a protective effect against diabetic cardiomyopathy in rats. The mechanism may be involved in reducing oxidative stress and inflammation via inactivation of the PKC-α signaling pathway.


2020 ◽  
Vol 13 (4) ◽  
pp. 1755-1763
Author(s):  
Swathi Putta ◽  
Kotaiah Silakabattini ◽  
Jagadeesh Kumar T

The objective of the study is to evaluate the ethanolic leaf extract of Tylophora indica (ELTI) on pancreatic and hepatic oxidative stress in streptozotocin (STZ) induced diabetic rats. The serum blood glucose and liver enzymes (AST, ALT and ALP) were estimated in all the groups. The elevated blood glucose levels and liver enzymes were found to be decreased with ELTI in STZ induced diabetic rats. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S- transferase (GST) and the levels of reduced glutathione (GSH) were also decreased, while an increase in the levels of thiobarbituric acid reactive substances (TBARS) were observed in pancreas and liver with ELTI treatment in STZ induced diabetic rats. Histopathology reveals that the protective effect of ELTI over STZ induced oxidative damage in both liver and pancreas. These results indicated that ELTI has more potential antioxidant effects on diabetic-induced oxidative stress.


2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olubanke O. Ogunlana ◽  
Babatunde O. Adetuyi ◽  
Miracle Rotimi ◽  
lohor Esalomi ◽  
Alaba Adeyemi ◽  
...  

Abstract Background Diabetes, a global cause of mortality in developing countries is a chronic disorder affecting the metabolism of macromolecules and has been attributed to the defective production and action of insulin characterized by persistent hyperglycemic properties. This global disorder harms organs of the body such as the liver, kidney and spleen. Medicinal plants such as Hunteria umbellate have been shown to possess hypoglycemic, antioxidative and anti-diabetic properties owing to the high concentration of active phytochemical constituents like flavonoids and alkaloids. The present study seeks to evaluate the hypoglycemic activities of ethanolic seed extract of Hunteria umbellate on streptozotocin-induced diabetes rats. Methods Thirty (30) female experimental rats were randomly divided into five groups with six rats per group and were administered streptozotocin (STZ) and Hunteria umbellate as follows. Group 1 served as control and was given only distilled water, group 2 rats were administered 60 mg/kg STZ; Group 3 was administered 60 mg/kg STZ and 100 mg/kg metformin; group 4 rats were administered 60 mg/kg STZ and 800 mg/kg Hunteria umbellate, group 5 rats 60 mg/kg STZ and 400 mg/kg Hunteria umbellate. The fasting blood glucose level of each rat was measured before sacrifice. Rats were then sacrificed 24 h after the last dose of treatment. Results The results showed that Hunteria umbellate significantly reversed STZ-induced increase in fasting blood glucose and increase in body and organs weight of rats. Hunteria umbellate significantly reversed STZ-induced decrease in antioxidant enzyme in liver, kidney and spleen of rats. Hunteria umbellate significantly reversed STZ-induced increase in oxidative stress markers in liver, kidney and spleen of rats. Conclusion Collectively, our results provide convincing information that inhibition of oxidative stress and regulation of blood glucose level are major mechanisms through which Hunteria umbellate protects against streptozotocin-induced diabketes rats.


2015 ◽  
Vol 93 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Chandrabose Sureka ◽  
Thiyagarajan Ramesh ◽  
Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190–220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Shiqiang Wang

Objective To investigate the effects of exercise on the myocardial oxidative stress injury of diabetic rats, and discussed the role of Keap1/Nrf2 signaling pathway in this process Methods  Tyep 2 diabetic rat model was established by streptozotocin injection through abdominal cavity and high fat diet. The all the diabetic rats were divided into three groups: control group (NC), diabetes group(T2DM) and diabetes exercise group, NC and T2DM group were kept quiet for 8 weeks, T2DME group was trained for 8 weeks. After the exercise, weight, heart weight and blood were measured. MDA, T-SOD and GSH-PX enzyme were measured by biochemical method. Ho-1, Keap1, Nrf2 gene and protein expression were detected by RT-PCR and WesternBlotting. Results Compared with NC group, the weight of rats in the T2DM group significantly decreased [(528+/-71g vs 362+/-33g), P<0.05], HWI  significantly increased [(2.845+/-0.22 vs 3.841+/-0.21, P <0.05], blood glucose was significantly increased [(6.4±3.8 vs 26±7.5mmol/L), P <0.01],T-SOD and GSH-PX activity decreased significantly (P<0.05), Ho-1 protein expression increased (P<0.01), Keap1 and Nrf2 showed no significant changes, and Nrf2 nuclear transposition decreased (P<0.05). Compared with the T2DM group, no significant change in body weight and heart weight in the T2DME group, with significant decrease in HWI[(3.841±0.21 vs 3.235±0.23),P<0.05], with significant decrease in blood glucose [(26.0±7.5 vs 21.0±6.8),P<0.05]. Ho-1 gene and protein expression increased significantly(P<0.05and P<0.01), with no significant change of Keap1, while Nrf2 expression increased significantly (P < 0.05), and Nrf2 nuclear transposition increased significantly (P < 0.01). Conclusions Exercise activates the myocardial Keap1/Nrf2 signaling pathway in rats, promotes the expression of downstream antioxidant enzymes, increases cardiac antioxidant capacity, and resists diabetic myocardial oxidative stress injury.


Sign in / Sign up

Export Citation Format

Share Document