Synthetic Zeolite Supplementation as a Potential Candidate for the Therapy of Diabetic Syndrome

2021 ◽  
Vol 24 (10) ◽  
pp. 1067-1076
Author(s):  
Hussein A. Sultan ◽  
Mahmoud Ashry ◽  
Alaa M.H. El-Bi ◽  
Noha N. Yassen ◽  
Mahenor E. Abdelsa ◽  
...  
Author(s):  
T. A. Epicier ◽  
G. Thomas

Mullite is an aluminium-silicate mineral of current interest since it is a potential candidate for high temperature applications in the ceramic materials field.In the present work, conditions under which the structure of mullite can be optimally imaged by means of High Resolution Electron Microscopy (HREM) have been investigated. Special reference is made to the Atomic Resolution Microscope at Berkeley which allows real space information up to ≈ 0.17 nm to be directly transferred; numerous multislice calculations (conducted with the CEMPAS programs) as well as extensive experimental through-focus series taken from a commercial “3:2” mullite at 800 kV clearly show that a resolution of at least 0.19 nm is required if one wants to get a straightforward confirmation of atomic models of mullite, which is known to undergo non-stoichiometry associated with the presence of oxygen vacancies.Indeed the composition of mullite ranges from approximatively 3Al2O3-2SiO2 (referred here as 3:2-mullite) to 2Al2O3-1SiO2, and its structure is still the subject of refinements (see, for example, refs. 4, 5, 6).


1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


2020 ◽  
Vol 12 (3) ◽  
pp. 189
Author(s):  
Sebastian Gäb

When we were on the subway back from his lecture, I said to Robin: “I’m not sure there actually are any religious fictionalists.” We keep talking about them in papers and lectures, acting as if fictionalism in religion is a real possibility, but to be honest, I haven’t been able to spot one in the wild so far. The only potential candidate who comes to mind is Don Cupitt, who wrote things like: “I still pray and love God, even though I fully acknowledge that no God actually exists.”[1] Perhaps this is as fictionalist as it gets. But then again, Cupitt never explicitly declared himself a fictionalist (at least to my knowledge). Moreover, on other occasions he sounds more like an expressivist than a fictionalist, e.g. when he says: “The Christian doctrine of God just is Christian spirituality in coded form.”[2] So, if there are any actual fictionalists out there, please step forward.[1] Don Cupitt, After God: The Future of Religion (Basic Books, 1997), 85.[2] Don Cupitt, Taking leave of God (SCM Press, 1980), 14.


2019 ◽  
Author(s):  
Debbie Marianne Yee ◽  
Sarah L Adams ◽  
Asad Beck ◽  
Todd Samuel Braver

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the brain integrates the motivational value of diverse incentives (e.g., motivational integration) into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N=44) and younger (N=54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. Together these data suggest that older adults may have impairments in incentive integration, and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.


2020 ◽  
Vol 19 (1) ◽  
pp. 15-20
Author(s):  
Junyi Xiang ◽  
Feng Huang ◽  
Renhua Huang ◽  
Jingzhan Su ◽  
Yulong Liu

Prostate cancer is one of the leading causes of death in men all over the world. Treatment options such as androgen ablation therapy and cytotoxic agents have many undesirable side effects, narrow therapeutic windows, or other limitations. In this research, we have explored the effects of paeonol on prostate cancer and its mechanism of action. Our results have shown that paeonol reduced the viability of prostate cancer cells in a dose-dependent manner. The wound-healing assay, a surrogate marker of tumor metastasis, showed that the relative wound width of 10 µM group was less than that of 50 µM paeonol-treated cells. Besides, the results of the transwell assay also showed that the number of migrated cells was significantly lower after treatment with 50 µM paeonol compared to the 10 µM group. The Western blot results showed that paeonol treatment induced a decrease in the mesenchymal markers (vimentin and N-cadherin), while the epithelial marker (E-cadherin) increased in a dose-dependent manner suggesting that paeonol effectively inhibits the epithelial-mesenchymal transformation in PC3 cells. Furthermore, the expression of STAT3 and p-STAT3 was also decreased after paeonol treatment, which indicated that the STAT3 signaling pathway was inhibited by paeonol. To conclude, the results summarized in this paper suggest that paeonol could be a potential candidate in the treatment of prostate cancer.


Author(s):  
Nivedita Bhardwaj ◽  
Nancy Tripathi ◽  
Bharat Goel ◽  
Shreyans K. Jain

: During cancer progression, the unrestricted proliferation of cells is supported by the impaired cell death response provoked by certain oncogenes. Both autophagy and apoptosis are the signaling pathways of cell death, which are targeted for cancer treatment. Defects in apoptosis result in reduced cell death and ultimately tumor progression. The tumor cells lacking apoptosis phenomena are killed by ROS- mediated autophagy. The autophagic programmed cell death requires apoptosis protein for inhibiting tumor growth; thus, the interconnection between these two pathways determines the fate of a cell. The cross-regulation of autophagy and apoptosis is an important aspect to modulate autophagy, apoptosis and to sensibilise apoptosis-resistant tumor cells under metabolic stress and might be a rational approach for drug designing strategy for the treatment of cancer. Numerous proteins involved in autophagy have been investigated as the druggable target for anticancer therapy. Several compounds of natural origin have been reported, to control autophagy activity through the PI3K/Akt/mTOR key pathway. Diosgenin, a steroidal sapogenin has emerged as a potential candidate for cancer treatment. It induces ROS-mediated autophagy, inhibits PI3K/Akt/mTOR pathway, and produces cytotoxicity selectively in cancer cells. This review aims to focus on optimal strategies using diosgenin to induce apoptosis by modulating the pathways involved in autophagy regulation and its potential implication in the treatment of various cancer. The discussion has been extended to the medicinal chemistry of semi-synthetic derivatives of diosgenin exhibiting anticancer activity.


2019 ◽  
Vol 19 (9) ◽  
pp. 720-726 ◽  
Author(s):  
Boguslaw Lipinski

Although it is generally accepted that selenium (Se) is important for life, it is not well known which forms of organic and/or inorganic Se compound are the most biologically active. In nature Se exists mostly in two forms, namely as selenite with fourvalent and selenate with sixvalent cations, from which all other inorganic and organic species are derived. Despite a small difference in their electronic structure, these two inorganic parent compounds differ significantly in their redox properties. Hence, only selenite can act as an oxidant, particularly in the reaction with free and/or protein- bound sulhydryl (SH) groups. For example, selenite was shown to inhibit the hydroxyl radicalinduced reduction and scrambled reoxidation of disulfides in human fibrinogen thus preventing the formation of highly hydrophobic polymer, termed parafibrin. Such a polymer, when deposited within peripheral and/or cerebral circulation, may cause irreversible damage resulting in the development of cardiovascular, neurological and other degenerative diseases. In addition, parafibrin deposited around tumor cells produces a protease-resistant coat protecting them against immune recognition and elimination. On the other hand, parafibrin generated by Ebola’s protein disulfide isomerase can form a hydrophobic ‘spike’ that facilitates virus attachment and entry to the host cell. In view of these specific properties of selenite this compound is a potential candidate as an inexpensive and readily available food supplement in the prevention and/or treatment of cardiovascular, neoplastic, neurological and infectious diseases.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Gyan Vardhan ◽  
Vikas Kumar ◽  
Megha Agrawal ◽  
Puneet Dhamija

Background: COVID-19 has been declared as a pandemic recently and has caused many deaths worldwide. Till date no effective drug or vaccine is available against SARS-CoV-2. There is an urgent need to find effective alternative preventive and treatment strategies to deal with SARS-CoV-2 outbreak. Objective: This communication proposes a new potential drug combination (repurposed) for prophylaxis and treatment of SARS-CoV-2. Methods and Materials: We performed a brief review of literature on combination of Hydroxychloroquine, Melatonin and Mercaptopurine for prophylaxis and treatment of Novel COVID-19 infection and also assessed their possible mechanism of action against SARS-CoV-2. Observation: Proposed combination seems to be safe and target is unlikely to develop resistance to this combination. Conclusion: This scientific review proposes potential repurposed drugs and their combination targeting SARS-CoV-2. Conclusion: This scientific review proposes potential candidate repurposed drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4293
Author(s):  
Zhen-Wang Li ◽  
Chun-Yan Zhong ◽  
Xiao-Ran Wang ◽  
Shi-Nian Li ◽  
Chun-Yuan Pan ◽  
...  

Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23–46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 372 ◽  
Author(s):  
Jinjin Luan ◽  
Qing Wang ◽  
Xu Zheng ◽  
Yao Li ◽  
Ning Wang

To avoid conductive failure due to the cracks of the metal thin film under external loads for the wearable strain sensor, a stretchable metal/polymer composite film embedded with silver nanowires (AgNWs) was examined as a potential candidate. The combination of Ag film and AgNWs enabled the fabrication of a conductive film that was applied as a high sensitivity strain sensor, with gauge factors of 7.1 under the applied strain of 0–10% and 21.1 under the applied strain of 10–30%. Furthermore, the strain sensor was demonstrated to be highly reversible and remained stable after 1000 bending cycles. These results indicated that the AgNWs could act as elastic conductive bridges across cracks in the metal film to maintain high conductivity under tensile and bending loads. As such, the strain sensor engineered herein was successfully applied in the real-time detection and monitoring of large motions of joints and subtle motions of the mouth.


Sign in / Sign up

Export Citation Format

Share Document