Tribological Characteristics of Nickel-Aluminium Bronze CuAl10Ni5Fe4 against 30CrMnSiA Steel after the Prior Corrosion Treatment

2012 ◽  
Vol 201-202 ◽  
pp. 73-77 ◽  
Author(s):  
Zhi Hai Tan ◽  
Qiang Guo ◽  
Wen Kai Zhai ◽  
Zheng Ping Zhao

The tribological characteristics of nickel-aluminium bronze CuAl10Ni5Fe4 against 30CrMnSiA steel after the prior corrosion treatment was studied at the M2000A model wear tester. The wear rate of corroded specimen was less than that of uncorroded specimen at the early stage of prior corrosion treatment, while the wear resistances deteriorated and the average friction coefficient slightly declined with the extension of prior corrosion period. The tests of CuAl10Ni5Fe4 sliding bearing at PLS-100 swing tribometer were used to validate the results. The wear resistances of CuAl10Ni5Fe4 sliding bearing increased slightly after a short period of prior corrosion, and the average friction coefficient decreased slightly after a long term of prior corrosion. A suitable period of prior corrosion treatment can enhance the wear resistance performance of CuAl10Ni5Fe4 bearing. The tribological characteristics of CuAl10Ni5Fe4 sliding bearing tested by PLS-100 rack swing tribometer are consistent with the conclusions of the tests at M2000A model wear tester.

2013 ◽  
Vol 331 ◽  
pp. 48-51
Author(s):  
Guang Yu He ◽  
Xiao Dong Zhu ◽  
Wei Feng He ◽  
Yan Chai

Traditional lubrication by oil sometimes does not work because of the high temperature, fast speed and excessive load of the aeroengine bearings. The Graphite-like Carbon coating is used to improve the insufficient lubrication in this paper. And the micro hardness, the friction coefficient and the wear rate tests are offered: with GLC, the hardness is increased twice at least, its friction coefficient is 25% and the wear rate is 1/100 when contrasted with that of the typical bearings material. The tests and calculation results show:the wear cycles of the GLC coated W9Cr4V is more than 400 times of that of the uncoated W9Cr4V and even when the GLC coating is worn out, the friction coefficient of W9Cr4V is only 0.15 which can effectively lubricate for the bearing for a short period of time when the liquid lubrication does not work. So it is proved to be effective in improving the wear resistance and reliability of bearings.


2019 ◽  
Vol 26 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Fangfang Wang ◽  
Lajun Feng ◽  
Huini Ma ◽  
Zhe Zhai ◽  
Zheng Liu

Abstract To improve the wear resistance of polyurethane (PU) coating and its adhesion to the steel substrate, a series of simple and practicable techniques were designed to mix nano-SiO2 with PU powder to cast a coating layer onto the steel. When the addition of nano-SiO2 was small, a network structure of PU-SiO2 was produced. It improved the wear resistance of the composite coating and its adhesion to the steel substrate. When the addition of nano-SiO2 was excessive, agglomerated nano-SiO2 particles not only affected the bond between the PU resin and the steel substrate but also became abrasive materials, intensifying the abrasion of the composite coating during friction. It resulted in lower bonding strength and poorer wear resistance of the composite coating. The wear rate and friction coefficient of 2 wt.% SiO2/PU composite coating were 1.52×10−6 cm3/min N and 0.31, respectively. Its wear resistance was about 10 times as high as that of the pure PU coating. Furthermore, a simple and practicable installation was designed to test the bonding strength between the coating and the steel substrate. The bonding strength between 2 wt.% SiO2/PU composite coating and the steel substrate was 7.33 MPa, which was 39% higher than that of the pure PU coating.


2018 ◽  
Vol 18 (18) ◽  
pp. 18-23 ◽  
Author(s):  
Sandra Veličković ◽  
Slavica Miladinović ◽  
Blaža Stojanović ◽  
Ružica R. Nikolić ◽  
Branislav Hadzima ◽  
...  

Abstract Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.


2012 ◽  
Vol 500 ◽  
pp. 117-122
Author(s):  
Xiu Li Fu ◽  
Xiao Qin Wang ◽  
Yong Zhi Pan ◽  
Yang Qiao

The wear-resistance performance of machined surface is an important factor in the evaluation of surface quality and precision in aerospace manufacturing industry. By using high-speed Ring-Block friction and wear machine (MRH-3), the influence of cutting parameters in milling aluminum alloy 7050-T7451 on wear-resistance of machined surface including friction coefficient and wear quantity are experimentally investigated. The wear-resistance is particularly sensitive to cutting speed and feed rate. The friction coefficient has marked drop trends as cutting speed increases. The influence of cutting speed on wear quantity is more complicated and the tendency of wear quantity was ascend in first and descend at last (v>900/min). The results show that the influence of cutting parameters on wear-resistance was also positively correlated with surface roughness and work-hardening of machined surface. The high work-hardening and surface quality had the promoting effecting on wear-resistance. The experiment and analysis results show that the machined surface by high speed cutting and lower feed rate has more superior in surface quality and wear-resistance performance comparing with conventional cutting speed.


2011 ◽  
Vol 80-81 ◽  
pp. 661-666
Author(s):  
Yun Cai Zhao ◽  
Jia Jia Mao ◽  
Chun Ming Deng ◽  
Wem You Ma

This paper is about the study of the KF301/WS2composite lubrication wear-resisting coatings prepared by supersonic plasma spraying. Basing on the research of the tribological characteristics, it has been discussed the self-lubricity and the failure mechanism showed by composite lubrication coatings under high-temperature conditions. Research shows that the wear rate of the coatings increased with the increase of the temperature. At 300°C, the wear rate is 1.02×10-4mg/m; At 750°C, the wear rate is 2.61×10-4mg/m. With the increase of temperature, friction coefficient of the coatings shows gradually increasing. When the temperature falls below 600°C, friction coefficient keeps around 0.08; At 750°C, the friction coefficient is 0.12. Temperature has great effect on the friction and wear properties ofthe self-lubricating wear-resisting coatings, mainly manifests in two aspects: first, with the increase of the temperature, under the common influence of thermal stress and frictional contact stress, it promotes the WS2solid lubricant film cracking, breakage, shedding process, and lubrication and abrasive resistance reduces; on the other hand, the WS2occurs chemical reaction under high temperature, generating lubricity phase of NiWO4, CrS, and lubricity phases are well supplied, lubricating film has an effect of continuous lubrication on the rubbing surface, So the coating shows low-friction, and it also represents that the KF-301/ WS2self-lubricating composite coating has good lubrication and abrasive resistance under high temperature.


2005 ◽  
Vol 473-474 ◽  
pp. 255-260 ◽  
Author(s):  
T. Sebestyén ◽  
Gábor Buza ◽  
F. Franek ◽  
János Takács ◽  
Zoltán Kálazi ◽  
...  

In this work we intend to investigate the surface properties of laser sintered and coated parts, by measurement of friction coefficient and wear rate. The main aim of this research is to justify laser sintered prototype tools for injection molding of fibre-reinforced polymers. For increase of wear resistance we used hard Co-based and Fe-based coatings on laser-sintered phosphorous bronze and unalloyed steel substrate. Short carbon- and glass-fibre-reinforced polymers were used as counter bodies. For the tribological laboratory model tests a pin-on-disk test rig was used. In case of coated parts – with higher wear resistance – we used a cylinder-on-cylinder tribometer. The tribological properties were determined at different load conditions. Our results show that the friction coefficient and wear resistance of laser treated surfaces are good. The coefficient of friction of coated specimens is slightly less, but the wear rate is significantly less.


2016 ◽  
Vol 53 (1) ◽  
pp. 66-74
Author(s):  
J. Lungevics ◽  
A. Leitans ◽  
J. Rudzitis ◽  
N. Bulahs ◽  
P. Nazarovs ◽  
...  

Abstract Carbon-copper composite coatings reinforced with titanium were deposited using high power magnetron sputtering technique. Tribological and metrological tests were performed using Taylor Hobson Talysurf Intra 50 measuring equipment and CSM Instruments ball-on-disk type tribometer. Friction coefficient and wear rate were determined at 2N, 4N, 6N loads. It was revealed that friction coefficient decreased at a higher Ti concentration, which was particularly expressed at bigger applied loads. However, wear volume values tended to increase in the beginning, till Ti concentration reached about 11 %, but then decreased, thus providing better nanocoating wear resistance.


2019 ◽  
Vol 71 (9) ◽  
pp. 1064-1071 ◽  
Author(s):  
Alagarsamy S.V. ◽  
Ravichandran M.

Purpose Aluminium and its alloys are the most preferred material in aerospace and automotive industries because of their high strength-to-weight ratio. However, these alloys are found to be low wear resistance. Hence, the incorporation of ceramic particles with the aluminium alloy may be enhanced the mechanical and tribological properties. The purpose of this study is to optimize the specific wear rate and friction coefficient of titanium dioxide (TiO2) reinforced AA7075 matrix composites. The four wear control factors are considered, i.e. reinforcement (Wt.%), applied load (N), sliding velocity (m/s) and sliding distance (m). Design/methodology/approach The composites were fabricated through stir casting route with varying weight percentages (0, 5, 10 and 15 Wt.%) of TiO2 particulates. The mechanical properties of the composites were studied. The specific wear rate and friction coefficient of the newly prepared composites was determined by using a pin-on-disc apparatus under dry sliding conditions. Experiments were planned as per Taguchi’s L16 orthogonal design. Signal-to-noise ratio analysis was used to find the optimal combination of parameters. Findings The mechanical properties such as yield strength, tensile strength and hardness of the composites significantly improved with the addition of TiO2 particles. The analysis of variance result shows that the applied load and reinforcement Wt.% are the most influencing parameters on specific wear rate and friction coefficient during dry sliding conditions. The scanning electron microscope morphology of the worn surface shows that TiO2 particles protect the matrix from more removal of material at all conditions. Originality/value This paper provides a solution for optimal parameters on specific wear rate and friction coefficient of aluminium matrix composites (AMCs) using Taguchi methodology. The obtained results are useful in improving the wear resistance of the AA7075-TiO2 composites.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1805
Author(s):  
Yu ◽  
Zhang ◽  
Tang ◽  
Gao

(1) In order to improve the properties of antifriction and wear resistance of polyimide (PI) composite under high temperature conditions, (2) 3-Aminopropyltriethoxysilane (APTES) and Lanthanum (La) salt modifications were employed to manufacture poly-p-phenylenebenzobisoxazole (PBO)/PI composites with different interface properties. The representative ambient temperatures of 130 and 260 °C were chosen to study the friction and wear behavior of composites with different interface properties. (3) Results revealed that while both modification methods can improve the chemical activity of the surface of PBO fibers, the La salt modification is more effective. The friction coefficient of all composites decreases with the increase of sliding velocity and load at two temperatures, and the specific wear rate is increases. Contrary to the situation in the 130 °C environment, the wear resistance of the unmodified composite in the 260 °C environment is greatly affected by the sliding velocity and load, while the modified composites are less affected. Under the same test parameters, the PBO–La/PI composite has the lowest specific wear rate and friction coefficient, and (4) La salt modification is a more effective approach to improve the properties of antifriction and wear resistance of PI composite than APTES modification in high ambient temperatures.


2017 ◽  
Vol 54 (2) ◽  
pp. 64-71
Author(s):  
A. Leitans ◽  
J. Lungevics ◽  
J. Rudzitis ◽  
A. Filipovs

Abstract The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.


Sign in / Sign up

Export Citation Format

Share Document