On Problems of Mechanical Properties of Structural Steel in Load-Carrying Structure of Historical Building Construction

2012 ◽  
Vol 249-250 ◽  
pp. 1103-1108 ◽  
Author(s):  
Marcela Karmazínová ◽  
Jindrich Melcher

The paper is focused on the problems of the mechanical properties of steel used for load-carrying structures of civil engineering constructions, especially from the viewpoint of properties of old steels used in historical constructions in comparison with current steels. Chemical composition and physical-mechanical properties of historical steels can be important, for example, in the case of reconstructions, when for the static assessment and evaluation of existing constructions subjected to new (higher) loading actions, material properties of load-carrying structure must be known. In the case of constructions aged about 100 years, usually no project documentation and no information about used material and its properties exist. Then, the properties must be determined using material tests carried-out on the test specimens taken from the real existing structure. But here the sampling of test specimens is limited by the possibilities of existing structural system and by the dimension of particular members from which the specimens are taken, so that the test specimen dimensions and number are limited. Thus, the evaluation of material properties for obtaining representative design values can be more difficult and less reliable than in the case of the large test number. But the main problem is to determine the usable design values of material properties (design yield and ultimate strength) to utilize them for the reliable static re-design of existing structure under actual loading actions. Some problems indicated above have been shown on the example of the material analysis of steel load-carrying structure of slaughterhouse aged more than 100 years. This analysis has been performed recently within the framework of the construction exploration in connection with the intended revitalization of historical “industrial zone” in the city of Brno, Czech Republic.

2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractCarbon nanofibers possess excellent conductivity properties, which may be beneficial in the design of more effective neural prostheses, however, limited evidence on their cytocompatibility properties exists. The objective of the present in vitro study was to determine cytocompatibility and material properties of formulations containing carbon nanofibers to predict the gliotic scar tissue response. Poly-carbonate urethane was combined with carbon nanofibers in varying weight percentages to provide a supportive matrix with beneficial bulk electrical and mechanical properties. The substrates were tested for mechanical properties and conductivity. Astrocytes (glial scar tissue-forming cells) were seeded onto the substrates for adhesion. Results provided the first evidence that astrocytes preferentially adhered to the composite material that contained the lowest weight percentage of carbon nanofibers. Positive interactions with neurons, and, at the same time, limited astrocyte functions leading to decreased gliotic scar tissue formation are essential for increased neuronal implant efficacy.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2378
Author(s):  
Mertol Tüfekci ◽  
Sevgi Güneş Durak ◽  
İnci Pir ◽  
Türkan Ormancı Acar ◽  
Güler Türkoğlu Demirkol ◽  
...  

To investigate the effect of polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes polyacrylonitrile (PAN) and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using the finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.


2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


2007 ◽  
Vol 336-338 ◽  
pp. 2406-2410
Author(s):  
Yi Wang Bao ◽  
Xiao Xue Bu ◽  
Yan Chun Zhou ◽  
Li Zhong Liu

A relative method, defined as indirect approach to evaluate the material properties via the relationship between unknown properties and a known property, is proposed to estimate some properties that could not be measured by the traditional methods for ceramics. Experiments and theoretic analysis based on the relative method were carried out in this study to estimate the properties in following aspects: determining the temperature dependence of elastic modulus of some machineable ceramics by comparing the deflections; obtaining the modulus and strength of ceramic coatings supported by substrates, from the variation in properties of the rectangular beam samples before and after coating; estimating the residual stresses in tempered glass by comparing the change in the surface strength after strengthening.


2016 ◽  
Vol 699 ◽  
pp. 37-42 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek

Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.


2021 ◽  
Author(s):  
Erling Østby ◽  
Bjørn-Andreas Hugaas ◽  
Agnes Marie Horn

Abstract Considering the vast number of articles that have been published during the last 150 years related to hydrogen embrittlement and the multiple attempts to explain the governing mechanisms, it is evident that hydrogen’s effect on mechanical properties in steel is still a controversial topic. This little atom has even by some authors been referred to as the “little devil”. We do not intend to explore this particular description of hydrogen any further. However, we would like to shed some light on the key technical aspects we believe need to be further scrutinized and understood to ensure that the decision-makers have sufficiently reliable data available to decide whether hydrogen gas can be safely transported in new or existing offshore pipelines at an acceptable cost.


2002 ◽  
Vol 124 (3) ◽  
pp. 734-744 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


2019 ◽  
Vol 71 (3) ◽  
pp. 406-410
Author(s):  
Fritz Klocke ◽  
Thomas Bergs ◽  
Christoph Löpenhaus ◽  
Philipp Scholzen ◽  
Tim Frech

Purpose The lower density of powder metallurgical (PM) gears compared to solid steel gears leads to not only a lower weight but also a lower load-carrying capacity. Therefore, PM gears are cold rolled before hardening to increase the density in the highly stressed surface zone and, thus, the flank load-carrying capacity. A further approach to increase the flank load-carrying capacity is the reduction of friction and wear in the tooth contact. The purpose of this paper is to analyze the hard rolling process as a new manufacturing step in the PM process chain to influence the boundary layer. Design/methodology/approach The investigation includes the new process of hard rolling, the variation of the cooling lubricant in the hard rolling process and the evaluation of its influence on the material properties and the flank load-carrying capacity. Therefore, the additives of the cooling lubricant are varied regarding the sulfur and phosphorous content. The load-carrying capacity is evaluated on disk-on-disk test rig and the material properties are evaluated by metallographic tests and boundary layer. Findings The results of the specimen characteristics in the micro and nano range show a significant influence of hard rolling on the residual stresses and the chemical surface composition. Because of hard rolling, residual compressive stresses as well as roughness are reduced and the flank load-carrying capacity is increased by high phosphorous content of the cooling lubricant. Originality/value This paper investigates a new manufacturing step to increase resource efficiency by increasing the flank load-carrying capacity of spur gears.


2021 ◽  
Author(s):  
Antonion Korcari ◽  
Alayna E Loiselle ◽  
Mark R Buckley

Tendon injuries are very common and result in significant impairments in mobility and quality of life. During healing, tendons produce a scar at the injury site, characterized by abundant and disorganized extracellular matrix and by permanent deficits in mechanical integrity compared to healthy tendon. Although a significant amount of work has been done to understand the healing process of tendons and to develop potential therapeutics for tendon regeneration, there is still a significant gap in terms of assessing the direct effects of therapeutics on the functional and material quality specifically of the scar tissue, and thus, on the overall tendon healing process. In this study, we focused on characterizing the mechanical properties of only the scar tissue in flexor digitorum longus (FDL) tendons during the proliferative and remodeling healing phases and comparing these properties with the mechanical properties of the composite healing tissue. Our method was sensitive enough to identify significant differences in structural and material properties between the scar and tendon-scar composite tissues. To account for possible inaccuracies due to the small aspect ratio of scar tissue, we also applied inverse finite element analysis (iFEA) to compute mechanical properties based on simulated tests with accurate specimen geometries and boundary conditions. We found that the scar tissue linear tangent moduli calculated from iFEA were not significantly different from those calculated experimentally at all healing timepoints, validating our experimental findings, and suggesting the assumptions in our experimental calculations were accurate. Taken together, this study first demonstrates that due to the presence of uninjured stubs, testing composite healing tendons without isolating the scar tissue overestimates the material properties of the scar itself. Second, our scar isolation method promises to enable more direct assessment of how different treatment regimens (e.g., cellular ablation, biomechanical and/or biochemical stimuli, tissue engineered scaffolds) affect scar tissue function and material quality in multiple different types of tendons.


Sign in / Sign up

Export Citation Format

Share Document