Effects of Mixing Parameters on Tensile Strength of TPU/NR Blends

2013 ◽  
Vol 291-294 ◽  
pp. 2654-2656
Author(s):  
Nor Azwin Ahad ◽  
Sahrim Hj Ahmad ◽  
Norazwani Muhammad Zain

The blends of thermoplastic polyurethane (TPU) with natural rubber (NR) were prepared via melt mixing technique, at four different blending temperature at range 180°C - 210°C and mixing times of 8, 10, 12, 14 min. The effects of both mixing parameters on tensile strength of the blends were investigated. The blend of 85TPU15NR shows the maximum tensile strength at 180°C and 10 min mixing. The viscosity of the polymer blends will decrease as the temperature increased. The movements of molecules are more worthy because of the poor molecules interaction. The increasing of mixing time will increase the compatibility of the blends and also increase in mechanical properties. Mixing time and mixing temperature are important parameters in acquiring blends having optimum mechanical properties.

2012 ◽  
Vol 576 ◽  
pp. 394-397 ◽  
Author(s):  
Noor Azlina Hassan ◽  
Hassan Norita ◽  
Sahrim Haji Ahmad ◽  
Rozaidi Rasid ◽  
Hazleen Anuar ◽  
...  

Thermoplastic natural rubber (TPNR) nanocomposites were prepared by melt blending method with the optimum mixing parameters (140oC, 100 rpm, 12 min) using internal mixer (Haake 600 P). The aim of this work is to study the effects of organo-montmorillonite (OMMT) on the physical and mechanical properties of TPNR with and without coupling agent (maleic anhydride grafted polyethylene, MA-PE). Significant improvement in tensile strength and modulus of TPNR nanocomposites were obtained with the presence of MA-PE.


2012 ◽  
Vol 626 ◽  
pp. 240-244
Author(s):  
Skulrat Pichaiyut ◽  
Charoen Nakason ◽  
Norbert Vennemann

Thermoplastic natural rubber (TPNR) based on blending of thermoplastic polyurethane (TPU) and epoxidized natural rubber with 25 mol % epoxide (ENR-25) was prepared by simple blend technique. Influence of different types of plasticizer and processing oil (i.e., DOP, TDAE oil and Paraffinic oil) with a fixed loading level of 20 phr was investigated. The main aim was to improve elasticity and lowering the hardness of the blends. It was found that an incorporation of processing oil and plasticizer caused decreasing of mixing torque, mixing temperature, and mechanical properties in terms of tensile strength, and hardness. This is attributed to diffusion of oil or plasticizer molecules into ENR and TPU phases. The oil and plasticizer typically acts as lubricant to promote the ease of flow and influence on various properties. It was also found that an incorporation of processing oil and plasticizer caused decreasing of glass transition temperature (Tg) of rubber and TPU phases, tension set value and Tan δ which refer to greater rubber elasticity and tendency to recover to original shape after prolonged extension. Additionally, the blend with DOP exhibited superior mechanical and other related properties than those of the blends with TDAE oil and paraffinic oil, respectively.


2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


2012 ◽  
Vol 85 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Md. Najib Alam ◽  
Swapan Kumar Mandal ◽  
Subhas Chandra Debnath

Abstract Several zinc dithiocarbamates (ZDCs) as accelerator derived from safe amine has been exclusively studied in the presence of thiazole-based accelerators to introduce safe dithiocarbamate in the vulcanization of natural rubber. Comparison has been made between conventional unsafe zinc dimethyldithiocarbamate (ZDMC) with safe novel ZDC combined with thizole-based accelerators in the light of mechanical properties. The study reveals that thiuram disulfide and 2-mercaptobenzothiazole (MBT) are always formed from the reaction either between ZDC and dibenzothiazyledisulfide (MBTS) or between ZDC and N-cyclohexyl-2-benzothiazole sulfenamide (CBS). It has been conclusively proved that MBT generated from MBTS or CBS reacts with ZDC and produces tetramethylthiuram disulfide. The observed synergistic activity has been discussed based on the cure and physical data and explained through the results based on high-performance liquid chromatography and a reaction mechanism. Synergistic activity is observed in all binary systems studied. The highest tensile strength is observed in the zinc (N-benzyl piperazino) dithiocarbamate-accelerated system at 3:6 mM ratios. In respect of tensile strength and modulus value, unsafe ZDMC can be successfully replaced by safe ZDCs in combination with thiazole group containing accelerator.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1837
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna ◽  
Massimo Messori

The present work investigated the possibility to use wet blue (WB) leather wastes as natural reinforcing fibers within different polymer matrices. After their preparation and characterization, WB fibers were melt-mixed at 10 wt.% with poly(lactic acid) (PLA), polyamide 12 (PA12), thermoplastic elastomer (TPE), and thermoplastic polyurethane (TPU), and the obtained samples were subjected to rheological, thermal, thermo-mechanical, and viscoelastic analyses. In parallel, morphological properties such as fiber distribution and dispersion, fiber–matrix adhesion, and fiber exfoliation phenomena were analyzed through a scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) to evaluate the relationship between the compounding process, mechanical responses, and morphological parameters. The PLA-based composite exhibited the best results since the Young modulus (+18%), tensile strength (+1.5%), impact (+10%), and creep (+5%) resistance were simultaneously enhanced by the addition of WB fibers, which were well dispersed and distributed in and significantly branched and interlocked with the polymer matrix. PA12- and TPU-based formulations showed a positive behavior (around +47% of the Young modulus and +40% of creep resistance) even if the not-optimal fiber–matrix adhesion and/or the poor de-fibration of WB slightly lowered the tensile strength and elongation at break. Finally, the TPE-based sample exhibited the worst performance because of the poor affinity between hydrophilic WB fibers and the hydrophobic polymer matrix.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2011 ◽  
Vol 239-242 ◽  
pp. 3231-3235
Author(s):  
Xiao Yu Zheng ◽  
Jin Cheng Wang ◽  
Ke Yang

In this paper, hyperbranched organic montmorillonite (H-OMMT) with hydroxyl (-OH) groups was prepared. The organic montmorillonite (OMMT) was used as a reinforcing agent in NR matrix. The H-OMMT modified natural rubber (NR) had good mechanical properties with the addition of the H-OMMT. Properties, such as tensile strength and abrasion loss, were researched and compared. Results showed that NR/H-OMMT-5% composite had the best tensile and were resistant properties.


2021 ◽  
pp. 002199832110370
Author(s):  
Chia-Fang Lee ◽  
Chin-Wen Chen ◽  
Fu-Sheng Chuang ◽  
Syang-Peng Rwei

Multi-wall carbon nanotubes (MWCNTs) at 0.5 wt% to 2 wt% proportions were added to thermoplastic polyurethane (TPU) synthesized with polycarbonatediol (PCDL), 4,4’-methylene diphenyl diisocyanate (MDI), and 1,3-butanediol(1,3-BDO). To formulate a new TPU-MWCNT nanocomposite, the composite was melt-blended with a twin-screw extruder. To ensure the even dispersion of MWCNTs, dispersant (ethylene acrylic ester terpolymer; Lotader AX8900) of equal weight proportion to the added MWCNTs was also added during the blending process. Studies on the mechanical and thermal properties, and melt flow experiments and phase analysis of TPU-MWCNT nanocomposites, these nanocomposites exhibit higher tensile strength and elongation at break than neat TPU. TPU-MWCNT nanocomposites with higher MWCNT content possess higher glass-transition temperature (Tg), a lower melt index, and greater hardness. Relative to neat TPU, TPU-MWCNT nanocomposites exhibit favorable mechanical properties. By adding MWCNTs, the tensile strength of the nanocomposites increased from 7.59 MPa to 21.52 MPa, and Shore A hardness increased from 65 to 81. Additionally, TPU-MWCNT nanocomposites with MWCNTs had lower resistance coefficients; the resistance coefficient decreased from 4.97 × 1011 Ω/sq to 2.53 × 104 Ω/sq after adding MWCNTs, indicating a conductive polymer material. Finally, the internal structure of the TPU-MWCNT nanocomposites was examined under transmission electron microscopy. When 1.5 wt% or 2 wt% of MWCNTs and dispersant were added to TPU, the MWCNTs were evenly dispersed, with increased electrical conductivity and mechanical properties. The new material is applicable in the electronics industry as a conductive polymer with high stiffness.


2017 ◽  
Vol 6 (3) ◽  
pp. 27
Author(s):  
Awham M. Hameed

In this work, two ternary polymer blends were prepared by mixing EP with (UP/PSR) and (PVC/PSR) respectively. Different mixing ratios were used (5, 10, 15 and 20) wt.% of the added polymers. Impact, tensile, compression, flexural and hardness tests were performed on the prepared blends. The results of testing showed that the first ternary blend A (EP/UP/PSR) records tensile strength values higher than that of the second ternary blend B (EP/ PVC/PSR). At 20wt.% of mixing, the blend B records higher impact strength than that of the blend A. There is large difference in the flexural behavior between A and B blends where the blend A records the highest value of flexural strength (F.S) at (5wt.%) while the blend B records the highest value of (F.S) at (20wt.%). From compression test, it is obvious that the values of compressive strength decrease of blend B more than that of the blend A as well as the same behavior can be obtained through the hardness test.


2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


Sign in / Sign up

Export Citation Format

Share Document