Slurry Wear Test of Long Kenaf Polyester Composite (LKPC) and Long Kenaf Polyester with Fiberglass Composite

2013 ◽  
Vol 393 ◽  
pp. 919-924
Author(s):  
Muhd Azimin Ab Ghani ◽  
A.F. Ahmad Kamal ◽  
Mohamad Ali Ahmad ◽  
Y.M.D. Taib ◽  
Z. Salleh ◽  
...  

This paper presents an experimental study on the influence of fiberglass woven in Long Kenaf Polyester Composite (LKPC). Wear and friction characteristics were examined using sea water and sand as a slurry. Wear test were carried out using Slurry Erosion Test Rig (TR-40). These tests were performed at room temperature with speed of 200 rpm for every 2 km interval. The results from the tests show that mass loss were depends on the matrix composition of the composite. Surface Roughness, Ra, was consistently reduced after each test in all cases.

2014 ◽  
Vol 592-594 ◽  
pp. 734-738 ◽  
Author(s):  
Chinnakurli Suryanarayana Ramesh ◽  
A.C. Vijetha ◽  
Nirupama Mohan ◽  
Harsha R. Gudi

Slurry erosion is a major concern in marine components which are subjected to wear and corrosion. These problems are addressed by developing materials which are harder and possessing excellent corrosion resistance in sea water. In this regard, there are serious attempts to modify the existing surfaces or developing new composite materials which are hard and also possess good strength. There are few reports suggesting the improved slurry erosion resistance of aluminium alloy by dispersing SiC within the metallic matrix. Higher the extent of SiC in the matrix material, better will be the slurry erosion resistant. In the light of above, the present work will focus on innovative development of Al6061-SiC composites by the combined process of powder metallurgy and casting followed by hot extrusion. A maximum amount of 40 wt % of SiC has been successfully incorporated in the hot extruded composites. The hot extruded composites are subjected to slurry erosive wear test in 3.5% NaCl solution containing silica sand particles. The parameters such as slurry concentration, rotational speed used in the present study are 10-30g/l, 500 – 1000 rpm respectively with test duration maintained at 24 hr. It is observed that increased content of SiC in matrix alloy has resulted in significant improvement in the slurry erosion resistance of the developed composites.


2014 ◽  
Vol 66 (4) ◽  
pp. 533-537 ◽  
Author(s):  
Surajit Purkayastha ◽  
Dheerendra Kumar Dwivedi

Purpose – This paper aims to deal with the study of effect of cerium oxide (CeO2) modification on the sand slurry erosion resistance of Ni – tungsten carbide (WC) coatings. Design/methodology/approach – Flame-sprayed conventional and CeO2-modified Ni–WC coatings were developed on a mild steel substrate. Slurry erosion tests were carried out in an in-house-designed and fabricated pot-type slurry erosion test rig to evaluate wear behavior of conventional and modified coatings. The erosive wear test was conducted using 5 per cent silica sand slurry at 850 rpm. Findings – Modified coatings exhibited increased hardness as compared to the conventional coating. Slurry erosion resistance of most modified coatings was superior to that of the unmodified coating. Hardness of coating doped with 0.9 per cent CeO2 was highest among all coatings, and concomitantly this composition also showed the least wear. Scanning electron microscopy (SEM) revealed that microcutting was much less in the modified coating. Originality/value – Slurry erosion wear of Ni–WC flame-sprayed coatings in sand slurry media is substantiated by extensive SEM study.


2011 ◽  
Vol 471-472 ◽  
pp. 1034-1039 ◽  
Author(s):  
Zulkiflle Leman ◽  
S.M. Sapuan ◽  
S. Suppiah

Polymer composites using natural fibres as the reinforcing agents have found their use in many applications. However, they do suffer from a few limitations, due to the hydrophilicity of the natural fibres which results in low compatibility with the hydrophobic polymer matrices. This paper aims to determine the best sugar palm (Arenga pinnata) fibre surface treatment to improve the fibre-matrix interfacial adhesion. Fibre surface modifications were carried out by water retting process where the fibres were immersed in sea water, pond water and sewage water for the period of 30 days. The test samples were fabricated by placing a single fibre in an unsaturated polyester resin. Single-fibre pull-out tests showed that freshwater-treated fibres possessed the highest interfacial shear strength, followed by untreated fibres, sewage water-treated fibres, and sea water-treated fibres. Further surface analyses of the samples were performed using a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectroscopy (EDS) system.


2004 ◽  
Vol 832 ◽  
Author(s):  
M. Perálvarez ◽  
M. López ◽  
B. Garrido ◽  
J.R. Morante ◽  
J. Barreto ◽  
...  

ABSTRACTSi nanoclusters (Si-nc) embedded in SiO2 present outstanding luminescent emission in the visible and are the material of choice for the realization of efficient light sources integrated with Si technology. PECVD is an attractive preparation route but there is still the need to understand how Si excess and matrix composition affect the precipitation of Si-nc and their photoluminescence (PL) efficiency. The SiOx PECVD layers studied here have a Si excess up to 50% and a thickness between 50 and 100 nm. The phase separation, precipitation and growth of the Si-nc have been achieved by annealing at 1250 °C. For reference, the same study has been performed in Si-nc/SiO2 materials synthesized by ion implantation and annealing. Refractive index and thickness measured by ellipsometry show a densification of the layers after the H release during annealing. A detailed composition profile has been determined by XPS and FTIR analyses and shows almost complete phase separation except for the interfaces, where a depletion of Si-nc is found. EFTEM demonstrates that isolated Si-nc are formed for Si excess up to 25% while for higher Si excess a continuous Si phase is observed. The PL efficiency in PECVD samples is maximized for a Si excess of 17% which is the same Si excess than that for the most emitting implanted samples. No dependence of PL efficiency has been found on the presence of Nitrogen in the matrix (up to the 10%).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Recep Demirsöz ◽  
Mehmet Erdl Korkmaz ◽  
Munish Kumar Gupta ◽  
Alberto Garcia Collado ◽  
Grzegorz M. Krolczyk

Purpose The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms. Design/methodology/approach In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°. Findings With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms. Originality/value The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.


Author(s):  
Turker Turkoglu ◽  
Sare Celik

Abstract In order to eliminate the agglomeration problem of reinforcement in the nanocomposite, a two-step dispersion process was employed. Under ultra-sonication and ball milling, 1 wt.% of multi-walled carbon nanotubes (MWCNTs) were properly dispersed in pure aluminum (Al) (used as the matrix phase). The composite powder mixture was then consolidated in an inert Ar gas atmosphere by hot pressing under certain fabrication parameters. The powder mixture was characterized by Raman Spectroscopy, and it was found that MWCNTs did not cause structural defects in the pre-production process. The microstructural analysis of the sintered composites by scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS), revealed that the reinforcement was uniformly distributed in the matrix. Wear test results indicated that the wear resistance of the composites increased with increase of MWCNT reinforcement, and the wear mechanism was determined to be a mixing type by examining the wear traces by SEM. In order to determine the effects of different process parameters on wear loss, a multilayer perceptron (MLP) based artificial neural network (ANN) was used, and experimental and predicted values were compared. It was noticed that the MLP based ANN model effectively evaluated the wear properties of the Al/MWCNT composites.


Author(s):  
J. Berget ◽  
E. Bardal ◽  
T. Rogne

Abstract WC-Co-Cr powders with different WC particle size have been sprayed by the HVOF process. At constant spraying conditions the powders give coatings of different quality. The deposition efficiency during spraying of powders containing large WC particles was found to be low compared to powders with finer WC grains. In addition the amounts of porosity and cracks were different. The coatings have been characterised by different methods. Erosion and erosion-corrosion tests showed that the WC particle size also influence the wear resistance of the coatings. Small WC particle size was found to be beneficial. Chemical composition of the matrix was also found to be decisive for the coating properties. An increase of the chromium content improved the erosion-corrosion resistance.


MRS Advances ◽  
2019 ◽  
Vol 4 (63) ◽  
pp. 3475-3484
Author(s):  
Miguel A. Téllez-Villaseñor ◽  
Carlos A. León Patino ◽  
Ricardo Galván Martínez ◽  
Ena A. Aguilar Reyes

ABSTRACTThe work presents an electrochemical study of the corrosion behaviour of two TiC/Cu-Ni metal matrix composites with a content of 10 and 20 wt.% Ni immersed in synthetic seawater. The composites were synthesized by a capillary infiltration technique, obtaining dense materials TiC/Cu-10Ni and TiC/Cu-20 Ni with a residual porosity of 1.8 and 1.7%, respectively. The corrosion rate (CR) was evaluated from the techniques of polarization curves (PC), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Electrochemical measurements were carried out under static conditions, ambient temperature and atmospheric pressure at 24 hours exposure in the electrolytic medium. The corrosion rate is affected by the Ni content in the matrix, with less corrosion in the composite with a higher Ni content. The higher content of Ni in the Cu-Ni alloy provides higher passivation and stability to the corrosion products film that are absorbed on the composite surface. Microscopic examination (SEM) showed a characteristic morphology of a corrosion mechanism of the localized type (pits and crevices) generated by a differential aeration, where the TiC/Cu-10Ni composite showed greater degradation.


Sign in / Sign up

Export Citation Format

Share Document