Microwave-Alkali Activation on the Morphology and Structure of Bamboo Activated Carbon

2014 ◽  
Vol 575 ◽  
pp. 154-159 ◽  
Author(s):  
Fazlena Hamzah ◽  
Mahanim Sarif ◽  
Farah Nur Zaiham Zulkifli ◽  
Nur Hamizah Ismail ◽  
Shareena Fairuz Abdul Manaf ◽  
...  

A study was conducted for production of activated carbon (AC) from industrial bamboo waste using carbonization and Microwave-alkali (Mw-A) activation techniques. The aim of the study is to produce activated carbon with higher surface area via Mw-A activation techniques. The study was focused on the effect of activation (KOH soaking and Mw-A) and carbonization temperature (400oC and 500oC) on the physical and chemical structure of AC. The analysis was conducted using proximate analysis, BET surface area, FESEM and FTIR analysis. The morphology and characteristic study on activated carbon shown that Mw-A activation techniques gave higher BET surface area and well develop pore structure. The results indicated that Mw-A activation of activated carbon gave BET surface area of 950m2g-1, whereas by using steam activation only 719 m2g-1 of BET surface area was recorded. Higher carbonization temperature for Mw-A treated bamboo produced higher surface area of AC. At 500oC, 1578m2g-1 BET surface area of AC was achieved. This work highlighted, Mw-A activation can be applied and further enhanced to obtain higher surface area of activated carbon derived from industrial bamboo waste.

2014 ◽  
Vol 699 ◽  
pp. 87-92 ◽  
Author(s):  
Abdul Rahim Yacob ◽  
Adlina Azmi ◽  
Mohd Khairul Asyraf Amat Mustajab

The characteristics and quality of activated carbons prepared depending on the chemical and physical properties of the starting materials and the activation method used. In this study, activated carbon prepared using pineapple waste. Three parts of pineapple waste which comprises of peel, crown and leaf were studied. For comparison activated carbon were prepared by both physical and chemical activation respectively. Three types of chemicals were used, phosphoric acid (H3PO4), sulphuric acid (H2SO4), and potassium hydroxide (KOH). The preparation includes carbonization at 200°C and activation at the 400°C using muffle furnace. The chemical characterization of the activated carbon was carried out using Thermogravimetric analysis (TGA), Nitrogen gas adsorption analysis and Fourier transform infrared (FTIR). The highest BET surface area was achieved when the pineapple peel soaked in 20% phosphoric acid with a surface area of 1115 m2g-1. FTIR analysis indicates that the reacted pineapple waste successfully converted into activated carbons.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


2009 ◽  
Vol 79-82 ◽  
pp. 1907-1910
Author(s):  
Zhi Gang Xie

Porous activated carbon was prepared from orange wastes using zinc chloride as an activating agent by one-step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on pore characteristics of activated carbon were studied. The porous structures of the orange wastes activated carbon were investigated by BET, D-R equations, BJH equations and Kelvin theory. The morphology was observed using transmission electron microscopy (TEM). The mesoporous activated carbon is gained when the impregnation ratio is 3:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has total pore volume 2.098 cm3/g, mesoporous pore volume 1.438 cm3/g, with a high BET surface area 1476m2/g. The pore distribution of the mesoporous activated carbon is very concentrative, with average pore diameter of 3.88nm. While, the high specific surface area activated carbon is gained when the impregnation ratio is 2:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has high BET surface area 1909 m2/g, while the total pore volume is only 1.448cm3/g and microporous pore volume is 0.889cm3/g, with average pore diameter of 2.29 nm.


Author(s):  
Ahmet Erdem ◽  
Murat Dogru

The recent increase in the number of policies to protect the environment has led to a rise in the worldwide demand for activated carbon, which is the most extensively utilized adsorbent in numerous industries and has a high probability to be used in energy and agriculture sectors as electrodes in supercapacitors and for fertilizer production. This paper is about the production of activated biochar from oak woodchips char generated by an updraft fixed bed gasifier reactor. Following this, by using steam as activating agents and thermal energy from produced syngas, the resulting highly microporous carbonaceous bio-material has been subjected to physical activation at 750 °C. The properties of activated biochar include adsorption/desorption of N2 in order to identify the physical adsorption and surface area measurement, thermogravimetric analysis (TGA), Fourier Transform Infrared Spectrophotometer (FT-IR), X-Ray Diffractometer (XRD), and scanning electron microscopy (SEM). The biochar surface area, generated as a result of the gasification process, showed substantial improvement after steam activation. Also, significant discrepancies were obtained from the surface volume and areas of biochar by-products from the gasifier and activated biochar obtained by steam activation after the gasification treatment [Total pore volume 0.022 cm3 g−1 and 0.231 cm3 g−1, BET surface area 21.35 and 458.28 m2 g−1, respectively]. Besides, the two samples yielded noteworthy differences in their performances. As a consequence, the kinetics of steam gasification is quicker and more efficient for the conversion of the biochar to activated carbon. The pore sizes of the carbon produced by steam activation were distributed over a wide spectrum of values, and both micro and mesoporous structures were developed.


2010 ◽  
Vol 97-101 ◽  
pp. 510-513 ◽  
Author(s):  
Xue Jun Zhang ◽  
Hai Yan Li ◽  
Yan Hong Tian

Activated carbon fibers(ACFs) were prepared from general pitch-based carbon fiber by steam activation and catalytic activation method, respectively. The surface area and pore structure of the resultant ACFs were analyzed by N2 adsorption, and electrochemical performances as electrodes of super capacitors were characterized by galvanostatic, cyclic voltammograms and AC impedance spectrum analysis. The results show that ACFs prepared by both methods have similar BET surface area, while their pore size and distribution are different. Compared with steam activation, catalytic activation results in ACFs with high mesoporosity of 40%. The electrode performances show that the specific capacitances of ACFs prepared by catalytic activation method could be 213 F/g, two times of that of ACFs prepared by steam activation method, and more mesopores are the reason for the good capacitance performance.


2018 ◽  
Vol 3 (11) ◽  
pp. 6-11 ◽  
Author(s):  
Funda Ateş ◽  
Öznur Özcan

Activated carbons were prepared from poplar sawdust by chemical activation using ZnCl2, H3PO4 or KOH. The influence of activating agents, carbonization temperatures ranging from 500 ºC to 800 ºC, and mass ratio of chemical agent to precursor (1:1 and 2:1) on the porosity of activated carbons were studied. The properties of the carbons were characterized by adsorption/desorption of nitrogen to determine the BET areas, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). It was determined that the surface morphology and textural characteristics of activated carbons vary depending on the carbonization temperature or chemical agent. Maximum surface areas were obtained at carbonization temperatures of 500, 700 and 800 ºC for H3PO4, KOH and ZnCl2 activation, respectively. The activated carbons prepared using ZnCl2 and H3PO4 activation had a higher BET surface area (nearly 1100 m2/g) than that of the KOH activation (761 m2/g). This study also presents a comparison of mechanisms of activating agents and carbonization temperature. As a result of the experimental studies, positive results were obtained, and the production of activated carbon with a high surface area was conducted. 


2008 ◽  
Vol 5 (1) ◽  
pp. 47 ◽  
Author(s):  
O. Houache ◽  
R. Al-Maamari ◽  
B. Al-Rashidi ◽  
B. Jibril

Activated carbon adsorbent was prepared using Omani date palm tree stem as a precursor. Precursor samples were subjected to thermal treatment (at 400, 500 and 600 oC) before or after impregnation with either H3PO4 (85 wt %) or KOH (3 wt %). The activated carbon obtained was characterized by BET (surface area and porosity), Gas Pycnometry (true density) and SEM (texture). Sample subjected to carbonization, without chemical activation, exhibited low surface areas ~ 1.0 m2/g at 400 and 500 oC and 124 m2/g at 600 oC. Further treatment of such samples with either the acid or the base did not show improvement in surface area or other properties. Impregnations of the precursor with acid before carbonization significantly improved the surface area to as high as 1,100 m2/g at a carbonization temperature of 500 oC. Thus, activated carbon with a moderate surface area could be produced from date palm stem using low carbonization temperature. 


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2133-2146
Author(s):  
Gervais Kounou Ndongo ◽  
Ndi Julius Nsami ◽  
Ketcha Joseph Mbadcam

Ferromagnetic activated carbon (FAC) was prepared through impregnation of cassava peel with FeCl3 (3.75%) solution and pyrolyzed at 800 °C. Samples were characterized using iodine number, methylene blue number, X-ray fluorescence, Fourier transformation infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy, elemental analysis and N2 adsorption for surface area determination. The proximate analysis of cassava peel showed that the moisture content, fixed carbon, ash content, and the volatile matter were 3.52%, 82.97%, 4.97%, and 8.54%, respectively. The prepared FAC had a BET surface area of 405.9 m2/g, pore size of 2.03 nm and total pore volume of 0.11 cm3/g. The SEM analysis showed the presence of both micro and mesopores on the FAC sample. The XRD pattern of FAC showed the presence of characteristic peaks of magnetite–maghemite, confirming that the prepared material is ferromagnetic. According to the experimental results, the cassava peels are considered as appropriate raw material for FAC preparation.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1801
Author(s):  
Rafał Oliwa ◽  
Joanna Ryszkowska ◽  
Mariusz Oleksy ◽  
Monika Auguścik-Królikowska ◽  
Małgorzata Gzik ◽  
...  

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


Sign in / Sign up

Export Citation Format

Share Document