Theoretical and Experimental Researches Regarding the Use of Butanol at Diesel Engine

2014 ◽  
Vol 659 ◽  
pp. 183-188
Author(s):  
Alexandru Dobre ◽  
Constantin Pana ◽  
Nikolaos Cristian Nutu ◽  
Niculae Negurescu ◽  
Alexandru Cernat

Due to the increasing growth of fuel consumption and also its price, alcohols begin to show a real interest for their use as fuel at compression ignition engines. Tightening the requirements on reducing the level of pollutant emissions and greenhouse effect gases has led to the increasing of research on using alcohols as alternative fuel for diesel engine. Among the primary alcohols, butyl alcohol (butanol) is considered to be of great perspective in its use as fuel in diesel engines, due to its properties close to those of diesel fuel. The overall objective of the paper represents using butanol at an automotive diesel engine in order to reduce BSFC, to reduce engine emissions and replace fossil fuels. This paper presents some aspects of the operation of diesel engine fuelled with blends of diesel fuel and butanol. Results of theoretical and experimental investigations done on a 1.5 L diesel engine fuelled with butanol are presented. At the use of butanol in mixture with diesel fuel in different proportions (10% and 20% butanol vol.), brake specific energetic consumption of the engine was reduced by about 2.5% and respectively 5%, NOx emissions decreased by about 15% and respectively 20%, CO2 emission by about 5% for 20% butanol, at the engine running at full load and maximum torque engine speed. The results of experimental investigations have validated the physical-mathematical model used for the simulation of thermo-gas-dynamics processes from the inside engine cylinder. The paper brings real contributions in the field making available to specialists new information related to the use of butanol at the diesel engines.

2016 ◽  
Vol 822 ◽  
pp. 183-189
Author(s):  
Alexandru Dobre ◽  
Constantin Pană ◽  
Nikolaos Cristian Nuțu ◽  
Niculae Negurescu ◽  
Alexandru Cernat

Alcohols begin to show a real interest for their use as fuel at compression ignition engines due to require reducing the pollutants emissions, especially NOx emission. Among the primary alcohols, butyl alcohol (butanol) is considered to be of great perspective in its use as fuel in diesel engines due to its properties close to those of diesel fuel. It is miscible with the diesel fuel and the achieved blend is stable. In paper are presented some aspects regarding the diesel engine’s fuelling with butanol and diesel fuel blends using the experimental research and numerical modelling. The use of the butanol as a fuel for diesel engine has led to the reducing NOx emissions with about 25% and the Brake Specific Energetic Consumption (BSEC) with about 5% at the full load and the maximum torque engine speed.


Author(s):  
M P Ashok ◽  
C G Saravanan

Diesel engines are employed as the major propulsion power sources because of their simple, robust structure and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, an increase in the use of diesel engines causes a shortage of fossil fuel and results in a greater degree of pollution. To regulate the above, identifying an alternative fuel to the diesel engine with less pollution is essential. Ethanol–diesel emulsion is one such method, used for the preparation of an alternative fuel for the diesel engine. Experimental investigations were carried out to compare the performance of diesel fuel with different ratios 50D: 50E (50 per cent diesel No: 2: 50 per cent ethanol –100 per cent proof) and 60D: 40E emulsified fuels. In the next phase, experiments were conducted for the selected emulsified fuel ratio 50D: 50E for different high injection pressures and the results are compared. The results show that for the emulsified fuel ratios, there is a marginal increase in torque, power, NO x, emissions, and decreasing values of carbon monoxide (CO), sulphur dioxide (SO2) emissions at the maximum speed conditions, compared with diesel fuel. Also, it is found that an increase in injection pressure of the engine running with emulsified fuel decreases CO and smoke emissions especially between 1500 to 2000 r/min with respect to the diesel fuel.


2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


2014 ◽  
Vol 659 ◽  
pp. 211-216
Author(s):  
Nikolaos Cristian Nutu ◽  
Constantin Pana ◽  
Alexandru Dobre ◽  
Niculae Negurescu ◽  
Alexandru Cernat

The severe legislation regarding pollution from actual time determine us to find new alternative solutions for diesel engine fuelling. This paper objective is the use of LPG as alternative fuel at a diesel engine in the purpose of pollutant emissions level decreasing in general and especially of NOx and smoke emissions. Is difficult to use LPG as single fuel at the diesel engine because it has an high auto ignition endurance (CN = -3). There are many fuelling methods of the diesel engine with LPG, but the authors of this paper used the diesel-gas method for a 1,5 l engine fuelling. The research followed the establishment of the optimal LPG cyclic dose and the diesel engine adjustments for different engine operating regimen. The paper presents results of some theoretical and experimental investigations of the LPG fuelled diesel engine. Three substitute ratios of diesel fuel with LPG were taken into account for full load and 2000 rpm engine speed. Thus, the NOx emissions decreased with 20-28 % for different substitute ratios of diesel fuel with LPG. The smoke emission decreased with 35-47% for same substitute ratios. LPG fuelling represents a very good solution for a cleaner environment.


2021 ◽  
Vol 13 (17) ◽  
pp. 9677
Author(s):  
Dong Lin Loo ◽  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Jun Sheng Teh ◽  
Liviu Catalin Andrei ◽  
...  

Two main aspects of the transportation industry are pollution to the environment and depletion of fossil fuels. In the transportation industry, the pollution to the environment can be reduced with the use of cleaner fuel, such as gas-to-liquid fuel, to reduce the exhaust emissions from engines. However, the depletion of fossil fuels is still significant. Biodiesel is a non-toxic, renewable, and biodegradable fuel that is considered an alternative resource to conventional diesel fuel. Even though biodiesel shows advantages as a renewable source, there are still minor drawbacks while operating in diesel engines. Modern vehicle engines are designed to be powered by conventional diesel fuel or gasoline fuel. In this review, the performance, emissions, combustion, and endurance characteristics of different types of diesel engines with various conditions are assessed with biodiesel and blended fuel as well as the effect of biodiesel on the diesel engines. The results show that biodiesel and blended fuel had fewer emissions of CO, HC, and PM but higher NOx emissions than the diesel-fuelled engine. In the endurance test, biodiesel and blended fuel showed less wear and carbon deposits. A high concentration of wear debris was found inside the lubricating oil while the engine operated with biodiesel and blends. The performance, emissions, and combustion characteristics of biodiesel and its blends showed that it can be used in a diesel engine. However, further research on long-term endurance tests is required to obtain a better understanding of endurance characteristics about engine wear of the diesel engine using biodiesel and its blends.


2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


2016 ◽  
Vol 22 (3) ◽  
pp. 616-621
Author(s):  
Doru Coşofreţ ◽  
Cătălin Popa ◽  
Marian Ristea

Abstract The formation of CO2 emissions is largely dependent on the carbon content of the fuel used in diesel engines and on the fuel consumption. The mixture of biodiesel in fossil fuels is in line with most of the research presented in the specialty literature, a method of reducing CO2 emissions from diesel engines. Due to these controversies on the obtained results, the research of the biodiesel effects blended with fossil fuels is still a matter of study. Therefore, a laboratory study has been conducted on a naturally aspirated 4-stroke diesel engine, using different mixtures (10, 15, 20, 25, 30, 40 and 50%) of diesel with biodiesel produced from oil rape. The results of the study revealed the fact that CO2 emissions of the blends used are lower than the same emissions produced when powering the engine with diesel fuel. Furthermore, of all blends used in the study, the 15% biodiesel mixture in diesel fuel was marked by a major decrease of CO2 emissions and of specific fuel consumption.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098840
Author(s):  
Mohammed S Gad ◽  
Sayed M Abdel Razek ◽  
PV Manu ◽  
Simon Jayaraj

Experimental work was done to examine the impact of diesel fuel with alumina nanoparticles on combustion characteristics, emissions and performance of diesel engine. Alumina nanoparticles were mixed with crude diesel in various weight fractions of 20, 30, and 40 mg/L. The engine tests showed that nano alumina addition of 40 ppm to pure diesel led to thermal efficiency enhancement up to 5.5% related to the pure diesel fuel. The average specific fuel consumption decrease about neat diesel fuel was found to be 3.5%, 4.5%, and 5.5% at dosing levels of 20, 30, and 40 ppm, respectively at full load. Emissions of smoke, HC, CO, and NOX were found to get diminished by about 17%, 25%, 30%, and 33%, respectively with 40 ppm nano-additive about diesel operation. The smaller size of nanoparticles produce fuel stability enhancement and prevents the fuel atomization problems and the clogging in fuel injectors. The increase of alumina nanoparticle percentage in diesel fuel produced the increases in cylinder pressure, cylinder temperature, heat release rate but the decreases in ignition delay and combustion duration were shown. The concentration of 40 ppm alumina nanoparticle is recommended for achieving the optimum improvements in the engine’s combustion, performance and emission characteristics.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2021 ◽  
Vol 2 (143) ◽  
pp. 54-61
Author(s):  
Sergey V. Borisov ◽  
◽  
Aleksandr E. Lomovskikh ◽  
Oleg E. Prilepin ◽  
Timur R. Mamatkazin ◽  
...  

Improving the parameters of diesel engines is an urgent task. Work has been carried out to significantly reduce the consumption of their fuel with the introduction of water dispersions into the fuel. Currently, water-fuel emulsions with exotic emulsifiers are mainly tested. (Research purpose) The research purpose is in creation of a water-fuel emulsion without an emulsifier with a simple installation and identifying the influence of the composition and quality of this WFE on the performance of the YaMZ-236 diesel engine. (Materials and methods) The article presents a plant for the preparation of a "rough" water- fuel mixture from diesel fuel according to GOST 32511-2013 and distilled water according to GOST 6709. Authors conducted standard bench tests at the KI-5540- GOSNITI stand with a YaMZ-236 diesel engine with an upgraded fuel system and performed the control of the smoke content of the exhaust gases with the gas analyzer "AUTOTEST". The dependence of diesel performance indicators on the composition and dispersion of water-fuel emulsions without an emulsifier was studied experimentally with a minimum number of tests, but with the maximum possible combination of the values of three variable factors. (Results and discussion) The influence of various water-fuel emulsions on the performance of the diesel engine was evaluated according to the plan of a full factor experiment, including 20 tests. The second-order regression equations were obtained by mathematical processing of the test results. The feasibility of using water-fuel emulsions for diesel engines was confirmed. By modeling a water-fuel mixture without emulsifiers, there was created an aqueous dispersion with drops up to two micrometers. In the load tests of the diesel engine with it, there was noticed an improvement in its performance. (Conclusions) The introduction of 17-20 percent water dispersion with drops of up to two micrometers into diesel fuel reduced the specific fuel consumption by 18 percent, the smokiness in the K indicator by 20- 22, and in the N indicator by 30-35 percent.


Sign in / Sign up

Export Citation Format

Share Document