The Effect of Hydration Rate on Concrete Simulation with Cooling Pipe

2011 ◽  
Vol 71-78 ◽  
pp. 4907-4911
Author(s):  
You Ping Zhu ◽  
Tong Chun Li ◽  
Jing Chen

Hydration rata and temperature interaction is a complex problem. This paper focuses on variation of concrete hydration and its effect on temperature and stress filed simulation of concrete with cooling pipe. Through three-dimensional specified project with two methods that include consider effect of temperature on hydration rate and no consider effect of temperature on hydration rate, the computational results have been compared and the differences have been analyzed. So we advised that the temperature effect on hydration rate should been considered in temperature stress filed simulation of concrete with cooling pipe. It provide basis to the construction of mass concrete.

2010 ◽  
Vol 163-167 ◽  
pp. 1724-1727
Author(s):  
Xin Yong Xu ◽  
Zhen Yue Ma ◽  
Hong Zhan Zhang

The transient temperature field and creep of concrete surrounding a spiral case are analyzed with a three-dimensional method, based on ABAQUS. The mechanism of hydration heat and cooling pipes on temperature is studied. The distribution of temperature with construction is given. The effect of temperature on gap between steel liner and concrete is researched. It is concluded that the influence of the measure parameters and temperature is indispensable.


2012 ◽  
Vol 446-449 ◽  
pp. 1266-1269
Author(s):  
Zhen Hong Wang ◽  
Guo Xin Zhang ◽  
Zhao Gang Wang ◽  
Yi Liu

In view of the problem of concrete crack in the period of construction, this paper introduces the cause and the forming mechanism of crack in thin-walled concrete structure and points out that the difference between the inside and outside temperature at early stage and the basic difference of the temperature at later stage are considered as the main factors influencing the phenomena. This paper puts forward the application of pipe cooling which is used in the mass concrete to the thin-walled concrete structure. In doing so, the difference of the internal and surface temperature is reduced and the appearance of cracking is avoided. Under the basic theories of temperature field and stress field of concrete, the 3-D FEM with the numerical algorithm of pipe cooling is adopted to simulate the thermal field and stresses field of concrete aqueduct during construction and the result shows that good effect of temperature control and crack prevention is achieved in thin-walled concrete structure. At the same time, water cooling pipe has many merits including simple operation, easy adjustment, high adaptability, and low cost


2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


1999 ◽  
Vol 07 (01) ◽  
pp. 15-26 ◽  
Author(s):  
CHI-FANG CHEN ◽  
JANG-JIA LIN ◽  
DING LEE

A set of experiments were performed in the offshore area off the coasts of Taiwan and three-dimensional (3-D) measurements recorded. The 3-D effect on underwater propagation due to azimuthal variation of bottom topography is studied for the offshore regions southwest of Taiwan, where submarine canyons exist. A 3-D acoustic propagation model, FOR3D, is used to detect the 3-D effect. Computational results show that the 3-D effect is more prominent along the axis of the canyon than across it. Calculations show a very good agreement with field data, which indicate that the 3-D effect exists in this realistic ocean environment.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Thorsten Michler ◽  
Frank Schweizer ◽  
Ken Wackermann

It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels, nickel superalloys, and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THE,max, where the degradation of this mechanical property reaches a maximum. Above and below this temperature, the degradation is less. Unfortunately, the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications, studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly, and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THE,max are in the range of about 200–340 K, which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is, the value of THE,max itself, as well as the slope of the gradient, might affect the materials selection for a dedicated application. Given the current lack of scientific understanding, a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yongho Choi ◽  
Darea Jeong ◽  
Junseok Kim

We present a new method using the modified Cahn-Hilliard (CH) equation for smoothing piecewise linear shapes of two- and three-dimensional objects. The CH equation has good smoothing dynamics and it is coupled with a fidelity term which keeps the original given data; that is, it does not produce significant shrinkage. The modified CH equation is discretized using a linearly stable splitting scheme in time and the resulting scheme is solved by using a Fourier spectral method. We present computational results for both curve and surface smoothing problems. The computational results demonstrate that the proposed algorithm is fast and efficient.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3685 ◽  
Author(s):  
Marcin Adamczyk ◽  
Paweł Liberadzki ◽  
Robert Sitnik

This paper presents the results of several studies concerning the effect of temperature on digital cameras. Experiments were performed using three different camera models. The presented results conclusively demonstrate that the typical camera design does not adequately take into account the effect of temperature variation on the device’s performance. In this regard, a modified camera design is proposed that exhibits a highly predictable behavior under varying ambient temperature and facilitates thermal compensation. A novel temperature compensation method is also proposed. This compensation model can be applied in almost every existing camera application, as it is compatible with every camera calibration model. A two-dimensional (2D) and three-dimensional (3D) application of the proposed compensation model is also described. The results of the application of the proposed compensation approach are presented herein.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


2019 ◽  
Vol 13 (4) ◽  
pp. 351-356
Author(s):  
M. Haditale ◽  
R. S. Dariani ◽  
E. Ghasemian Lemraski

Abstract Graphene flakes were made from electrochemical exfoliation. To study graphene planes, different volumes of graphene solutions (1, 2, 4, and 7 ml) were sprayed on glass lamellae to get different graphene planes. I–V curve of all samples shows ohmic behavior with resistance in the order of kΩ which increases the slope of the I–V curve with increasing graphene planes (spray volume). The effect of temperature on all samples shows a clear jump in I–T curves. It is found that up to 150 °C current is almost constant, but after that current increases highly in the range of 1.8–10 times and resistance reduces sharply. Also, samples with lower graphene planes affected highly with temperature effect.


Sign in / Sign up

Export Citation Format

Share Document