Green Polyurethane Adhesives for Wood Bonding

2015 ◽  
Vol 1115 ◽  
pp. 331-336
Author(s):  
M.A.F. Amran ◽  
Ernie Suzana Ali

The Green polyurethane adhesive system was prepared using two types palm oil polyol having different molecular weight ~1100 (GA) and ~ 2200 (GB) respectively, 4-4-diphenylmethane diisocyanate (MDI) and nanoclay fillers via in-situ process. Adhesives were applied on both sides of two untreated wood substrate using brushing technique for lap shear test. The attached substrate then undergoes the curing process for 24 hours at room temperature with relative humidity of 50±5%. The disappearance of NCO peak in the Fourier transform infra-red (FTIR) spectrum showed that MDI has completely reacted to form PU. Contact angle measurement proved that high wetting condition obtains from green polyurethane (PU) adhesive. PU adhesive wood joint improved in shear strength with addition of 1wt% nanoclay for both green polyol.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 370
Author(s):  
Hadi Gholamiyan ◽  
Behnam Gholampoor ◽  
Reza Hosseinpourpia

This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated samples were analyzed before and after exposure to accelerated weathering and compared with those of untreated and solely treated ones. According to pull-off testing, the coating adhesion of the wood samples was considerably improved by plasma treatment, and obvious differences were observed between different plasma gases. The effect was more pronounced after the weathering test. Similar results were obtained for the abrasion resistance of the samples. The water contact angle measurement illustrated more hydrophilic character in the solely plasma-treated wood in comparison with the untreated wood. The application of coatings, however, strongly improved its hydrophobic character. The performances of waterborne and solvent-borne coatings on plasma-treated wood were comparable, although slightly better values were obtained by the waterborne system. Our results exhibit the positive effect of plasma treatment on coating performances and the increased weather resistance of the waterborne and solvent-borne coating systems on plasma-treated wood.


2018 ◽  
Vol 63 (3) ◽  
pp. 245-253 ◽  
Author(s):  
Manikandan Ayyar ◽  
Mohan Prasath Mani ◽  
Saravana Kumar Jaganathan ◽  
Rajasekar Rathanasamy

AbstractElectrospun polyurethane based nanocomposite scaffolds were fabricated by mixing with indhulekha oil. Scanning electron microscope (SEM) portrayed the nanofibrous nature of the composite and the average diameters of the composite scaffold were smaller than the pristine scaffolds. The fabricated scaffold was found to be hydrophobic (114°) due to the inclusion of indhulekha oil, which was displayed in contact angle measurement analysis. The fourier transform infrared spectroscopy (FTIR) results indicated that the indhulekha oil was dispersed in PU matrix identified by formation of hydrogen bond and peak shifting of CH group. The PU/indhulekha oil nanocomposite exhibits a higher decomposition onset temperature and also residual weight percentage at 900°C was more compared to the pure PU. Surface roughness was found to be increased in the composite compared to the pristine PU as indicated by the atomic force microscopy (AFM) analysis. In order to investigate the blood compatibility of electrospun nanocomposites the activated partial thromboplastin time (APTT) assay, prothrombin time (PT) assay and hemolytic assay were performed. The blood compatibility results APTT and PT revealed that the developed nanocomposites demonstrated delayed clotting time indicating the anticoagulant nature of the composite in comparison with the pristine PU. Further, it was also observed that the hemolytic index of nanocomposites was reduced compared to pure PU suggesting the non-hemolytic nature of the fabricated scaffold. Hence, the fabricated nanocomposites might be considered as a potent substitute for scaffolding damaged tissue due to their inherent physicochemical and blood compatibility properties.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Fadoua Bennouna ◽  
Moulay Sadiki ◽  
Soumya Elabed ◽  
Saad Ibnsouda Koraichi ◽  
Mohammed Lachkar

Despite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor (γ+), and electron-donor (γ−) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils. It has become more hydrophobic quantitatively with values of surface energy ranged from −25.84 to −43.45 mJ/m2 and more electron donors compared to the untreated sample. Moreover, the adhesion of four fungal strains (Penicillium commune (PDLd”), Thielavia hyalocarpa, Penicillium commune (PDLd10), and Aspergillus niger) on untreated and treated cedar wood was examined theoretically and experimentally. For untreated wood, the experimental adhesion showed a positive relationship with the results obtained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach which found that all fungal strains could adhere strongly to the cedar wood material. In contrast, this relationship was not always positive after treatment. The Environmental Scanning Electron Microscopy (ESEM) has shown that P. commune (PDLd10) and A. niger were found unable to adhere to the wood surface after treatment with sunflower and rapeseed oils. In addition, the results showed that the four fungal strains’ adhesion was decreased with olive and linseed oils treatment except that of P. commune (PDLd10) treated with linseed oil.


2009 ◽  
Vol 13 (9) ◽  
pp. 1073-1082
Author(s):  
Sylvain Chataigner ◽  
Jean-François Caron ◽  
Karim Benzarti ◽  
Marc Quiertant ◽  
Christophe Aubagnac

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed S. Belal ◽  
Jehan El Nady ◽  
Azza Shokry ◽  
Shaker Ebrahim ◽  
Moataz Soliman ◽  
...  

AbstractOily water contamination has been sighted as one of the most global environmental pollution. Herein, copper hydroxide nanorods layer was constructed onto cellulosic filter paper surface cured with polydopamine, Ag nanoparticles, and Cu NPs through immersion method. This work has been aimed to produce a superhydrophobic and superoleophilic cellulosic filter paper. The structure, crystalline, and morphological properties of these modified cellulosic filter paper were investigated. Scanning electron microscope images confirmed that the modified surface was rougher compared with the pristine surface. The contact angle measurement confirmed the hydrophobic nature of these modified surfaces with a water contact angle of 169.7°. The absorption capacity was 8.2 g/g for diesel oil and the separation efficiency was higher than 99%. It was noted that the flux in the case of low viscosity solvent as n-hexane was 9663.5 Lm−2 h−1, while for the viscous oil as diesel was 1452.7 Lm−2 h−1.


2011 ◽  
Vol 306-307 ◽  
pp. 25-30 ◽  
Author(s):  
Ping Luo ◽  
Zhan Yun Huang ◽  
Di Hu Chen

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.


2016 ◽  
Vol 36 (8) ◽  
pp. 771-784 ◽  
Author(s):  
Tejinder Kaur ◽  
Arunachalam Thirugnanam ◽  
Krishna Pramanik

Abstract Poly(vinyl alcohol) reinforced with nanohydroxyapatite (PVA-nHA) composite scaffolds were developed by varying the nHA (1%, 2%, 3%, 4%, and 5%, w/v) composition in the PVA matrix by solvent casting technique. The developed composite scaffolds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurement. The stability of the composite scaffolds in physiological environment was evaluated by swelling and degradation studies. Further, these composite scaffolds were tested for in vitro bioactivity, hemolysis, biocompatibility, and mechanical strength. SEM micrographs showed a homogenous distribution of nHA (3%, w/v) in the PVA matrix. XRD and ATR-FTIR analysis confirmed no phase contamination and the existence of the chemical bond between PVA-nHA at approximately 2474 cm-1. PVA-nHA composite scaffolds with 3% (w/v) concentration of nHA showed nominal swelling and degradation behavior with good mechanical strength. The mechanical strength and degradation properties of the scaffold above 3% (w/v) of nHA was found to deteriorate, which is due to the agglomeration of nHA. The in vitro bioactivity and hemolysis studies showed improved apatite formation and hemocompatibility of the developed scaffolds. In vitro cell adhesion, proliferation, alkaline phosphatase activity, and Alizarin red S staining confirmed the biocompatibility of the composite scaffolds.


2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (27) ◽  
pp. 21023-21032 ◽  
Author(s):  
Sepideh Khoee ◽  
Zahra Kachoei

Recovery of fracture toughness of a self-healing epoxy adhesive is achieved by using a novel amine nanocontainer.


Sign in / Sign up

Export Citation Format

Share Document