Mechanical Performance of a New Coir Fiber Laminated Composites

2011 ◽  
Vol 217-218 ◽  
pp. 852-855 ◽  
Author(s):  
Jia Yao ◽  
Ying Cheng Hu ◽  
Wei Lu ◽  
Jin Li

In order to overcome the uneven distribution of coir fiber density in the materials and the poor forming of the outer surface, a new type of coir fiber hybrid laminated composites has been developed. The non-woven needle felts of coir fiber are added as the core material, wood veneers are as the surface material, and E-type glass fiber felts are as the reinforcement material, the preparation of hybrid laminated composites has been carried out. Through the performance testing and scanning electron microscopy (SEM) analysis, a new type of biomass composite with excellent performance has been successfully developed. The application of coir fiber to obtain good impact toughness of composites has been effectively verified.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7295
Author(s):  
Hom Nath Dhakal ◽  
Chulin Jiang ◽  
Moumita Sit ◽  
Zhongyi Zhang ◽  
Moussa Khalfallah ◽  
...  

The aim of this study was to evaluate the moisture absorption behaviour and its influence on the mechanical properties of newly developed sandwich biocomposites with flax fibre-reinforced poly-lactic acid (PLA) face sheets and soft cork as the core material. Three different types of sandwich biocomposite laminates comprised of different layup configurations, namely, non-woven flax/PLA (Sample A), non-woven flax/PLA and cork as core (Sample B) and non-woven flax/paper backing/PLA, cork as core (Sample C), were fabricated. In order to evaluate the influence of moisture ingress on the mechanical properties, the biocomposites were immersed in seawater for a period of 1200 h. The biocomposites (both dry and water immersed) were then subjected to tensile, flexural and low-velocity falling weight impact tests. It was observed from the experimental results that the moisture uptake significantly influenced the mechanical properties of the biocomposites. The presence of the cork and paper in sample C made it more susceptible to water absorption, reaching a value of 34.33%. The presence of cork in the core also has a considerable effect on the mechanical, as well as energy dissipation, behaviours. The results of sample A exhibited improved mechanical performance in both dry and wet conditions compared to samples B and C. Sample A exhibits 32.6% more tensile strength and 81.4% more flexural strength in dry conditions than that in sample C. The scanning electron microscopy (SEM) and X-ray micro-CT images revealed that the failure modes observed are a combination of matrix cracking, core crushing and face core debonding. The results from this study suggest that flax/PLA sandwich biocomposites can be used in various lightweight applications with improved environmental benefits.


2011 ◽  
Vol 147 ◽  
pp. 127-131 ◽  
Author(s):  
Jian Yang ◽  
Zhen Li ◽  
Qiang Du

An experimental study was carried out to examine the material and structural properties of a new type of structural insulated panel (SIP) comprising the plywood board as facial panels and the Styrofoam as the core material. Material properties were characterized by subjecting specimens to bending, compression, tension and double shear tests. SIP specimens, both in small-scale and prototype sizes, were tested under bending, racking and axial loads respectively. This paper will report these tests and the obtained results.


2016 ◽  
Vol 827 ◽  
pp. 61-64
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek ◽  
Vladimír Rusnák

In this work the mechanical performance of various sandwich constructions with respect to core material were experimentally evaluated. Sandwich structures were made of glass prepreg and three types of plastic core using vacuum bagging, technology traditionally used for production of parts for transport industry. The aim of this study is to analyze the impact of the core material type and its thickness on bending behavior at different environmental temperatures. Moreover, the effect of core layers compared to one layer core of same thickness was determined. Conducted research provided useful information of bending behavior and showed specific failure modes of individual sandwich constructions.


Author(s):  
Nadimul Haque Faisal ◽  
Andrew Fowlie ◽  
Joe Connell ◽  
Sean Mackenzie ◽  
Ryan Noble ◽  
...  

Helical Auxetic Yarns (HAYs) can be used in a variety of applications from healthcare to blast and impact resistance. This work focuses on the effect of the use of different core materials (e.g. rubber, polyurethane, polytetrafluoroethylene/teflon, polypropylene, polyetheretherketone, polycarbonate, acetal) with a nitinol wire wrap component on the maximum Negative Poisson Ratio (NPR) produced and thus the auxetic performance of Helical Auxetic Yarns (HAYs). From the analytical model, it was found that an acetal core produced the largest NPR when compared to the other six materials. The trend obtained from the experimental tensile tests (validation) correlated closely with the theoretical predictions of the NPR as axial strain was increased. The experimental method presented a maximum NPR at an average axial strain of 0.148 which was close to the strain of 0.155 predicted by theory. However, the maximum experimental NPR was significantly lower than that predicted by the analytical model.


2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


CrystEngComm ◽  
2020 ◽  
Vol 22 (46) ◽  
pp. 8036-8044
Author(s):  
Jannis Wehmeier ◽  
Markus Haase

is an interesting shell material for β-NaREF4 particles of the lighter lanthanides (RE = Ce, Pr, Nd), as variation of its strontium content x allows to vary its lattice parameters and match those of the core material.


2021 ◽  
pp. 089270572199789
Author(s):  
S Gohar ◽  
G Hussain ◽  
A Ali ◽  
H Ahmad

Honey Comb Sandwich Structures (HCSS) have numerous applications in aerospace, automobile, and satellite industry because of their properties like high strength to weight ratio, stiffness and impact strength. Fused Deposition Modeling (FDM) is a process which, through its flexibility, simple processing, short manufacturing time, competitive prices and freedom of design, has an ability to enhance the functionality of HCSS. This paper investigates the mechanical behavior (i.e. flexural, edgewise compression and Interfacial bond strength) of FDM-built HCSS. The influence of face/core material was examined by manufacturing four types of specimens namely ABS core with Composite (PLA + 15% carbon fibers) face sheets, ABS core with PLA face sheets, TPU core with composite face sheets and TPU core with PLA face sheets. To measure the effect of face sheets geometry, raster layup was varied at 0°/90° and 45°/−45°. The mechanical characterization revealed that an optimum combination of materials is ABS core with composite face sheets having raster layup of 0°/90°. This study indicates that HCSS with complex lamination schemes and adequate mechanical properties could be manufactured using FDM which may widen the applications of FDM on an industrial scale.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3124-3130 ◽  
Author(s):  
HUI CONG LIU ◽  
XIU QING XU ◽  
WEI PING LI ◽  
YAN HONG GUO ◽  
LI-QUN ZHU

The shell material of microcapsules has an important effect on the electrolytic co-deposition behavior, the release of core material and the surface performance of composite coating. This paper discussed the tensile property and the stability of three shell materials including polyvinyl alcohol (PVA), gelatin and methyl cellulose (MC). It is found that these three shell materials have good mechanical strength and flexibility which are favorable to electrolytic co-deposition and stability of microcapsules in composite coating and that MC has well permeability and porosity which has a positive effect on the release of the core material in composite coating. Moreover, the study of the thermal properties and water vapor permeability of the three shell materials showed that their permeability improved with increase of temperature and humidity. In addition, the composite copper coating containing microcapsules with PVA, gelatin or MC as shell material was prepared respectively.


Sign in / Sign up

Export Citation Format

Share Document