Fundamental Studies on Wood-Plastic Composites: Effects of Cellulase Treatment on Hybrid Pennisetum Powder

2011 ◽  
Vol 239-242 ◽  
pp. 2638-2641
Author(s):  
Jun Mu ◽  
Yong Shun Feng ◽  
De Rong Zhang ◽  
Zhi Li Wang ◽  
Hong Bin Wang

Studies on interfacial compatibility of wood plastic composites(WPCs) have received considerable attention in recent years. The effects on the surface modification by cellulase treatment and the mechanical properties of prepared WPCs were investigated in this study. X-ray diffraction(XRD) results show that the relative crystallinity(RC) of Hybrid Pennisetum(HP) could be significantly changed by the cellulase treatment. The RC of HP powders mainly goes through a phase that it first increases and then decreases by the treatment of cellulase. Five groups of different cellulase dosage and different treatment time were selected to do the mechanical and DMA tests. With proper dosage of cellulase and treatment time, the mechanical properties of WPCs could be improved. Finally, in the case of HP powder/cellulase of 4/1 and treatment time for 2 hours, WPCs show the best performance.

2011 ◽  
Vol 311-313 ◽  
pp. 72-75
Author(s):  
Ji Wu Li ◽  
Dong Feng Zhu ◽  
Yong Gui Wu

In this study, wood plastic composites (WPC) material were fabricated with wood flour and polyvinyl chloride (PVC). To improve the interfacial compatibility between the wood flour and the PVC, silane method (SM) and tianate method(TM) were used to treat the wood flour, maleic anhydride copolymerized PVC with dicumyl peroxide. The effects of wood flour content, surface treatment on the mechanical properties of WPC materials were investigated. Fracture surfaces of tests specimens were analysis by SEM. Test results indicate that WPC material with wood flour treated by SM or TM together with PVC copolymerized showed good mechanical properties.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2020 ◽  
Vol 7 (21) ◽  
pp. 4197-4221 ◽  
Author(s):  
Francisco Colmenero ◽  
Jakub Plášil ◽  
Jiří Sejkora

The structure, hydrogen bonding, X-ray diffraction pattern and mechanical properties of six important uranyl carbonate minerals, roubaultite, fontanite, sharpite, widenmannite, grimselite and čejkaite, are determined using first principles methods.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


Sign in / Sign up

Export Citation Format

Share Document