The Optimum Technological Parameters and Properties of LDPE/LLDPE/Nano-Mg(OH)2 Systems

2011 ◽  
Vol 239-242 ◽  
pp. 437-440 ◽  
Author(s):  
Yu Hua Guo ◽  
Jian Jun Guo ◽  
Zhen Huang ◽  
Li Jun Teng

Nano-structured magnesium hydroxide (nano-MH) has been added into LDPE/LLDPE, the technological parameters, flame and mechanical properties, M.F.R. of LDPE/LLDPE/nano-MH samples have been examined. It is indicated two time extruder pelletization is a good technological route, which can make nano-MH disperse evenly in PE. The optimum rotational speed of screws changes from 37 to 42 rad/min, the die pressure changes from 35 to 61.5 bar. Nano-MH has good flame retardant and smoke suppressing properties. The samples added 60% nano-MH can reach UL94 FV-0 flame retardant rating. When nano-MH content is more than 40%, no smoke emits. With nano-MH content increases, the tensile strength, impact strength, elongation and M.F.R decreases, Young’s modulus increases.

2021 ◽  
Vol 877 ◽  
pp. 3-8
Author(s):  
Prathumrat Nuyang ◽  
Atiwat Wiriya-Amornchai ◽  
Watthanaphon Cheewawuttipong

The effect of compatibilizer agent was studied when adding Aluminum fine powder (Al) to reinforce in Polypropylene (PP) by compared between polymer matrix composites (PMCs) and PMCs added Polypropylene graft maleic anhydride (PP-g-MAH).The average particle size of the aluminum fine powder was around 75 μm filled in polypropylene with different proportions of 2.5, 5, 7.5 and 10wt%. PMCs were prepared using the internal mixer. The results found that when the amount of aluminum fine powder increased, the mechanical properties had changed, i.e., tensile strength, and Young’s Modulus increased, while the impact strength and elongation at break decreased. But, when adding compatibilizer 1wt% it was found that the trend of tensile strength, and Young’s Modulus increased that compared with non-compatibilizer, but the impact strength and elongation at break decreased. The part of the morphology of PMCs with non-compatibilizer was found that the particle of aluminum fine powder dispersed in the matrix phase, but there were many microvoids between filler and matrix. But, PMCs with compatibilizer caused the microvoids between filler and matrix to be reduced.


2013 ◽  
Vol 830 ◽  
pp. 211-214
Author(s):  
Xu Dong Tang ◽  
Sheng Long Tan

Mechanical properties and flame retardant property of the cured epoxy resins contained different content of hyperbranched polyphosphate ester(HPPE) were studyed. The results indicated that the tensile strength and the impact strength were inceased to11.26% and 306% respectively with HPPE loadings of 15%,besides the Oxygen Index(OI) value increased from 22 to 33 which shows a good flame retardant property was obtained.


2008 ◽  
Vol 55-57 ◽  
pp. 877-880 ◽  
Author(s):  
N. Duangphattra ◽  
C. Aramphongphun

This research work studies the effects of processing conditions on mechanical properties of polymer nanocomposites. Polypropylene (PP) nanocomposites reinforced with 0.5 and 2.5 %wt multiwall carbon nanotubes (MWCNTs) were prepared via melt compounding and formed by injection molding. 2k Full Factorial design was used to plan the experiments and determine the influences of the processing conditions on mechanical properties and carbon nanotube dispersion in the nanocomposites. These conditions consist of five factors: (a) %wt content of MWCNTs (0.5 and 2.5 %wt), (b) barrel temperature (190 and 220°C), (c) injection velocity (25 and 45 mm/sec), (d) screw rotational speed (75 and 227 rpm) and (e) holding pressure (45 and 65 bar) while injection pressure and cooling time were set at 75 bar and 50 sec, respectively, for all conditions. The samples were examined by Young’s modulus and tensile strength using a Universal Testing Machine (UTM). In addition, Scanning Electron Microscopy (SEM) was applied to study the dispersion of carbon nanotubes in the nanocomposites. The results showed that PP/MWCNT nanocomposites had Young’s modulus of 1,740 MPa and tensile strength of 34.5 MPa while original PP had 1,450 MPa and 28 MPa, respectively. Therefore, the mechanical properties were improved significantly with the content of MWCNTs. Full Factorial experiments investigate that significant factors are %wt, barrel temperature, injection velocity, and screw rotational speed. Moreover, SEM showed that a high content of MWCNTs led to a highly oriented skin layer with well-dispersed MWCNTs.


2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2021 ◽  
pp. 009524432110200
Author(s):  
Ali Ghorbankhan ◽  
Mohammad Reza Nakhaei ◽  
Ghasem Naderi

The friction stir process (FSP) method used to prepare polyamide 6 (PA6)/nitrile-butadiene rubber (NBR) nanocomposites with 1 wt% Graphene nanoparticles. Response surface methodology (RSM) and Box-Behnken design were used to study the effects of four input variables including tool rotational speed (ω), shoulder temperature (T), traverse speed (S), and the number of passes (N) on tensile strength and impact strength of PA6/NBR/Graphene nanocomposite. In order to investigate the dispersion state of Graphene and the morphology of the PA6/NBR blend in the presence of Graphene, wide x-ray patterns (WAX), scanning electron microscopy (SEM) were performed. Furthermore and differential scanning calorimetric (DSC) was used to investigate the thermal properties of PA6/NBR containing 1 wt% Graphene nanoparticles. The results confirmed that at the optimum range of input variables, PA6/NBR/Graphene nanocomposite provided good thermal stability as well as the highest tensile strength, and impact strength. This is caused by the large surface area to volume ratio of the dispersed layered Graphene in PA6/NBR blends. Under optimal conditions of the rotational speed of 1200 rpm, traverse speed of 20 mm/min, shoulder temperature of 125°C, and number pass of 3, the maximum tensile strength and impact strength are 70.4 MPa and 70.3 J/m, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2021 ◽  
pp. 004051752110086
Author(s):  
MJ Suriani ◽  
SM Sapuan ◽  
CM Ruzaidi ◽  
DS Nair ◽  
RA Ilyas

This paper aims to study the surface morphology, flammability and tensile properties of sugar palm fiber (SPF) hybrid with polyester (PET) yarn-reinforced epoxy composite with the addition of magnesium hydroxide (Mg(OH)2) as a flame retardant. The composites were prepared by hybridized epoxy and Mg(OH)2/PET with different amounts of SPF contents (0%, 20%, 35% and 50%) using the cold press method. Then these composites were tested by horizontal burning analysis, tensile strength testing and scanning electron microscopy (SEM) analysis. The specimen with 35% SPF (Epoxy/PET/SPF-35) with the incorporation of Mg(OH)2 as a flame retardant showed the lowest burning rate of 13.25 mm/min. The flame took a longer time to propagate along with the Epoxy/PET/SPF-35 specimen and at the same time producing char. Epoxy/PET/SPF-35 also had the highest tensile strength of 9.69 MPa. Tensile properties of the SPF hybrid with PET yarn (SPF/PET)-reinforced epoxy composite was decreased at 50% SPF content due to the lack of interfacial bonding between the fibers and matrix. Surface morphology analysis through SEM showed uniform distribution of the SPF and matrix with less adhesion, which increased the flammability and reduced the tensile properties of the hybrid polymeric composites. These composites have potential to be utilized in various applications, such as automotive components, building materials and in the aerospace industry.


Sign in / Sign up

Export Citation Format

Share Document