Specific Heat Capacity Measurement of Al / SiCp Composites by Differential Scanning Calorimeter

2011 ◽  
Vol 264-265 ◽  
pp. 669-674 ◽  
Author(s):  
B. Karthikeyan ◽  
S. Ramanathan ◽  
V. Ramakrishnan

Various materials are used to achieve a good “Thermal Control System” (TCS) of spacecraft. The performance of the TCS totally depends upon the thermal behaviour of the materials used in the elements of TCS. The measurements of the thermal properties of materials are fundamental for better understanding of the thermal design. Differential Scanning Calorimetry (DSC) is the most widely used thermal technique for obtaining a wealth of information about a material, especially for the specific heat measurement of a material. Stir casting technique was used to fabricate the 7075 aluminum alloy and 7075 Al / SiCp composites. The heat flow response is recorded as a function of actual sample temperature range from -1000 C to 4000 C. Specific heat characteristics of 7075 Al reinforced with different volume fraction of silicon carbide composites fabricated by stir casting method was analyzed.

2017 ◽  
Vol 14 (1) ◽  
pp. 742-746
Author(s):  
S Krishnamohan ◽  
S Ramanathan ◽  
V Ramakrishnan

The elevated strength, low weight ratio and excellent corrosion resistance intrinsic to titanium and its alloys has led to a wide range of successful applications which ensures high levels of unswerving performance in aerospace. The performance of the Thermal Control System extremely depends on the thermal behavior of the materials used in its elements. The measurements of the thermal properties of materials are necessary for better understanding of the thermal design. Differential scanning calorimetry (DSC) is the most extensively used thermal method for finding wealth of information about a material. The heat capacity (Cp) of a material was established quantitatively using DSC. The measurement was made by heating a very small quantity of the Ti6Al4V alloy and Ti6Al4V/Nano SiCp composites. Mechanical alloying (MA) and Powder metallurgy (P/M) techniques were used to fabricate the Ti6Al4V alloy and Ti6Al4V/ nano SiCp composites. The heat flow reaction was recorded as a function of definite sample temperature range from −100 °C to 375 °C. The measurements of the heat capacity of each sample in three runs were recorded by DSC. The heat capacity (Cp) of specimens is reported in this study.


In this research, an effort is made to familiarize and best potentials of the reinforcing agent in aluminum 7075 matrices with naturally occurring Beryl (Be) and Graphene (Gr) to develop a new hybrid composite material. A stir casting technique was adopted to synthesize the hybrid nanocomposites. GNPS were added in volume fractions of 0.5wt%, 1wt%, 1.5wt%, and 2wt% and with a fixed volume fraction of 6 wt.% of Beryl. As cast hybrid composites were microstructurally characterized with scanning electron microscopy and X-ray diffraction. Microstructure study through scanning electron microscope demonstrated that the homogeneous distribution reinforcement Beryl and GNPs into the Al7075 matrix. Brinell hardness and tensile strength of synthesized materials were investigated. The hybrid Al7075-Beryl-GNPs composites showed better mechanical properties compared with base Al7075 matrix material. The ascast Al7075-6wt.% Beryl-2wt.%GNPs showed 49.41% improvement in hardness and 77.09% enhancement in ultimate tensile strength over Al7075 alloy.


Author(s):  
K. Vinoth Babu ◽  
M. Uthayakumar ◽  
J. T. Winowlin Jappes ◽  
T. P. D. Rajan

This study reveals the multi objective optimization of machining parameters in drilling of SiC reinforced with aluminium metal matrix composites through grey relational analysis. The composite is prepared with varying volume fraction of the reinforcement by liquid metal stir casting technique. Uniform distribution of SiC particle in the matrix is witnessed through microscopy study and observed that the hardness and strength on different composite. The drilling experiments were performed with coated carbide tool with different point angle such as 90o, 120o and 140o. Cutting speed, feed, point angle and volume fraction are considered as input parameters and the performance characteristics such as surface roughness and thrust force are observed as output response in this study. The significant contributions of these factors are determined using Analysis of Variance (ANOVA). The optimized process parameters have been validated by the confirmation test. The experimental result shows that point angle influences more on output performance followed by feed and cutting speed.


2011 ◽  
Vol 60 (1) ◽  
pp. 95-104
Author(s):  
Leszek Moroń ◽  
Paweł Żyłka

Simplified isoperibol calorimetry for thermal testing of dielectric and conducting materials A simplified isoperibol calorimetry method for measuring specific heat in solids is described. Taking advantage of the classical Nernst dependency the specific heat is calculated from time-domain temperature curves registered for a sample forced heating and natural cooling phase. In order to improve accuracy of the measurements a correction factor, taking into account the heat transferred to the surrounding, is introduced along with a procedure of statistical elimination of unavoidable measurement deviations. The method is implemented in a simple and straightforward measuring system involving no vacuum calorimeter. The method is applicable for quick and routine specific heat measurements performed on small solid dielectric or metallic specimens at near-room temperature. Test results of various materials used commonly in electrical engineering are demonstrated and discussed as well as comparison to drop calorimetry and differential scanning calorimetry reference measurements is included. The overall repeatability of the test method and the simplified apparatus is estimated as not worse than 2.6%.


Author(s):  
K. Vinoth Babu ◽  
M. Uthayakumar ◽  
J. T. Winowlin Jappes ◽  
T. P. D. Rajan

This study reveals the multi objective optimization of machining parameters in drilling of SiC reinforced with aluminium metal matrix composites through grey relational analysis. The composite is prepared with varying volume fraction of the reinforcement by liquid metal stir casting technique. Uniform distribution of SiC particle in the matrix is witnessed through microscopy study and observed that the hardness and strength on different composite. The drilling experiments were performed with coated carbide tool with different point angle such as 90o, 120o and 140o. Cutting speed, feed, point angle and volume fraction are considered as input parameters and the performance characteristics such as surface roughness and thrust force are observed as output response in this study. The significant contributions of these factors are determined using Analysis of Variance (ANOVA). The optimized process parameters have been validated by the confirmation test. The experimental result shows that point angle influences more on output performance followed by feed and cutting speed.


Author(s):  
Liang Chen ◽  
Hua Pang ◽  
Xiaoming Song ◽  
Lili Liu ◽  
Wenjie Li ◽  
...  

Specific heat capacity of irradiated and un-irradiated Zr-4 alloy in the temperature range from 40°C to 500°C was measured by DSC (Differential Scanning Calorimetry) in Hot Cell of NPIC for the first time in China. The irradiated discal specimen was sampled from Zr-4 alloy plate, and the dose was about 18μSv/h. The measurement was proceeded on DSC device (404 F1 type), and the data of specific heat capacity was obtained by relative method made use of Proteus analytical software. Discharge air exhausted to hot cell by vent in DSC. The test result indicated that the test method was confirmed feasible and appropriate, then provided an effective approach for thermal parameter measurement for irradiated specimens.


2014 ◽  
Vol 21 (4) ◽  
pp. 505-515 ◽  
Author(s):  
Aykut Canakci ◽  
Fazli Arslan ◽  
Temel Varol

AbstractIn this study, metal matrix composites of an aluminum alloy (AA2024) and B4C particles with volume fractions 3, 5, 7, and 10 vol% and with sizes 29 and 71 μm were produced using stir-casting technique. The effects of B4C particle content and size of boron carbide on the mechanical properties of the composites such as hardness, 0.2% yield strength, tensile strength, and fracture were investigated. Furthermore, the relation between particle content, microstructure, and particle distribution has been investigated. The hardness of the composites increased with increasing particle volume fraction and with decreasing particle size, although the tensile strength of the composites decreased with increasing particle volume fraction and with decreasing particle size. Scanning electron microscopic observations of the microstructures revealed that dispersion of the coarser sizes of B4C particles was more uniform while the finer particles led to agglomeration of the particles and porosity.


2007 ◽  
Vol 353-358 ◽  
pp. 1275-1278
Author(s):  
Lin Geng ◽  
Hong Mei Wei ◽  
Xue Xi Zhang

SiCw/Al-18Si composites were prepared by squeeze casting technique. SiCw/Al-18Si composites were remelted before solidification. The effects of volume fraction of SiC whisker on solidification behavior of SiCw/Al-18Si composites were investigated by means of differential scanning calorimetry (DSC) technique and microstructure observation. DSC results indicated that the start solidification temperature and primary silicon peak temperature decreased gradually and the degree of supercooling increased with the increasing of SiC whisker content. SiC whisker and Sr decreased the average size of Si phases and improved the mechanical properties of the composites.


Hollow Glass Microspheres (HGM) in the range of 10–20 vol. % were used as space holders for making syntactic aluminum foam having density 2.28–2.49 gm/cc using stir-casting technique. Aluminium alloys have already established their exceptional ability to sketch out the material for required properties. Aluminium alloy and its composites are one of the widely used materials for aeronautics and marine applications where high strength is expected from a low density material. So, an effort is made to enhance this lightness of aluminium alloy LM13 without affecting its strength by reinforcing it with Hollow Glass Microspheres (HGM). This synthesized syntactic foam, was characterized in terms of density and compressive deformation behaviour. It was noted that the syntactic foam behaves like a high strength aluminium foam under compressive deformation exhibiting flat plateau region in the stress–strain curves. The plateau stress of syntactic foam decreases with Hollow Glass Microspheres volume fraction vis-à-vis porosity.


2013 ◽  
Vol 470 ◽  
pp. 158-161
Author(s):  
Baskaran Geetha ◽  
K. Ganeshan

Recent attention is focused on issues of utilization of industrial wastes. The paper deals with the Tribological characteristics of Al356 alloy reinforced with red mud of different volume fractions. Red mud is a gangue produced during the extraction of alumina, disposal of which has become a major issue. In recent years, the utilization of red mud as a filler material has increased due to its chemical composition, which includes metals like Fe2O3, Al2O3, Na2O and TiO2, etc. These metals exhibit good wear characteristics. The red mud collected from Malco, TamilNadu, India, is preheated in the furnace up to 500o C and 53 micron sized particles are mixed with Al356 alloy. Al MMC disc is manufactured by stir casting technique using Al356 alloy reinforced with different volume percentage (5%, 10%, 15% and 20%) of red mud. Pins of 10 mm diameter are machined from the brake shoe liner of commercial passenger car. The wear tests are then carried out on a pin-on-disc machine.. Wear rate is calculated for different percentage of reinforcement under different test conditions. The wear grooves formed on the Al MMC disc for all percentage of red mud are analyzed using optical micrograph. The results show that applied load and sliding velocity have significant influence on wear rate of composite. The co-efficient of friction decreases when the load increases. Experimental analysis is carried using Taguchis Design of Experiment method with various parameters like sliding velocities, applied load and composite volume fraction to identify the key factors that influence the wear rate. The Taguchi experiments results confirm the actual results obtained from the numerical calculation.


Sign in / Sign up

Export Citation Format

Share Document