The Chemical Analysis of S.kjellmanianum in Shandong Peninsula

2012 ◽  
Vol 554-556 ◽  
pp. 1884-1888 ◽  
Author(s):  
Li Li ◽  
Wei Wei Ma ◽  
Ge Fei Zhou

Sargassum kjellmanianumianum was collected in Yangma Island of Yantai, Long Island and Qingdao, respectively. Chemical components analysis was conducted. The results show that proteins, carbohydrates and mineral elements are the main nutrition composition of the S.kjellmanianumianum in the three areas. Among them the crude protein content is in scope for 11.70% to 15.09%. The total sugar content is not high, occupying only 16.47% to 26.42% of the dry weight. The content of the mineral element of K, Na, Ca, Mg, Fe is very high. Fatty acids of C16 and C18 are predominant fatty acids, accounting for about half of the total fatty acids. Amino acid content ranges from 13.08% to 15.19%, and the content of the aspartic acid, glutamic acid, valine and alanine is rich, and each is higher than 1%. There are a variety of essential nutrients of human body in the Sargassum kjellmanianumianum, which are valuable to be researched and exploited.

Author(s):  
Ikumi Umetani ◽  
Eshetu Janka ◽  
Michal Sposób ◽  
Chris J. Hulatt ◽  
Synne Kleiven ◽  
...  

AbstractBicarbonate was evaluated as an alternative carbon source for a green microalga, Tetradesmus wisconsinensis, isolated from Lake Norsjø in Norway. Photosynthesis, growth, and lipid production were studied using four inorganic carbon regimes: (1) aeration only, (2) 20 mM NaHCO3, (3) 5% (v/v) CO2 gas, and (4) combination of 20 mM NaHCO3 and 5% CO2. Variable chlorophyll a fluorescence analysis revealed that the bicarbonate treatment supported effective photosynthesis, while the CO2 treatment led to inefficient photosynthetic activity with a PSII maximum quantum yield as low as 0.31. Conversely, bicarbonate and CO2 treatments gave similar biomass and fatty acid production. The maximum growth rate, the final cell dry weight, and total fatty acids under the bicarbonate-only treatment were 0.33 (± 0.06) day−1, 673 (± 124) mg L−1 and 75 (± 5) mg g−1 dry biomass, respectively. The most abundant fatty acid components were α-linolenic acid and polyunsaturated fatty acids constituting 69% of the total fatty acids. The fatty acid profile eventuated in unsuitable biodiesel fuel properties such as high degree of unsaturation and low cetane number; however, it would be relevant for food and feed applications. We concluded that bicarbonate could give healthy growth and comparative product yields as CO2.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Refka Dhouibi ◽  
◽  
Hanen Oueslati ◽  
Senda Bahri ◽  
Khaled Jabou ◽  
...  

Almonds (Prunus amygdalus) are a rich source of many essential nutrients. However, there is a lack of enough information on almond varieties' biochemical composition, especially at the germination stage. Therefore, this study was conducted to determine the chemical components of the germinating Tunisian almonds. The study included determining the content of oils, proteins, fatty acids, and triglycerides during germination. Results indicated that the oleaginous seeds are rich in oil (55 to 65% of the dry mass) and crude protein (21.825 mg/mL). The dominant polyunsaturated fatty acids are oleic and linoleic acids which represent 64.53% and 24.38%, respectively, while palmitic acid is the most dominant saturated fatty acid with 7.65% of the total fatty acids. Also, the primary molecular types of triglycerides detected by L.C. analysis are triolein (32.3%) and dioleolinolein (24.0%), followed by palmitodiolein (12.5%) and oleodilinolein (12.6%.). The physico-chemical properties study revealed that almond oil remains stable, thus preserving its quality and nutritional value, even during transition from dormancy to germination. On the other hand, we also detected the presence of a lipolytic activity which is maximum on the 3rd day of germination (4.66 mUI). Our results indicate that almond oil plays an important role in human nutrition due to the presence of unsaturated fatty acids, and it is more stable than other oils.


2020 ◽  
Vol 10 (19) ◽  
pp. 6736
Author(s):  
Randa Darwish ◽  
Mohamed A. Gedi ◽  
Patchaniya Akepach ◽  
Hirut Assaye ◽  
Abdelrahman S. Zaky ◽  
...  

Chlamydomonas reinhardtii is a green microalgae used as a model organism associated with biotechnological applications, yet its nutritional value has not been assessed. This study investigates the nutritional capacity of C. reinhardtii as an additional value for this species beyond its known potential in biofuels and bio-products production. The composition of key nutrients in C. reinhardtii was compared with Chlorella and Spirulina, the species widely regarded as a superfood. The results revealed that the protein content of C. reinhardtii (46.9%) was comparable with that of Chlorella (45.3) and Spirulina (50.4%) on a dry weight basis. C. reinhardtii contained all the essential amino acids with good scores based on FAO/WHO values (0.9–1.9) as in Chlorella and Spirulina. Unsaturated fatty acids predominated the total fatty acids profile of C. reinhardtii were ~74 of which ~48% are n-3 fatty acids. Alpha-linolenic acid (ALA) content in C. reinhardtii (42.4%) was significantly higher than that of Chlorella (23.4) and Spirulina (0.12%). For minerals, Spirulina was rich in iron (3.73 mg/g DW) followed by Chlorella (1.34 mg/g DW) and C. reinhardtii (0.96 mg/g DW). C. reinhardtii, unlike the other two species, consisted of selenium (10 µg/g DW), and had a remarkably lower heavy metal load. Moreover, C. reinhardtii contained relatively high concentrations of chlorophyll (a + b) and total carotenoids (28.6 mg/g DW and 6.9 mg/g DW, respectively) compared with Chlorella (12.0 mg/g DW and 1.8 mg/g DW, respectively) and Spirulina (8.6 mg/g DW and 0.8 mg/g DW, respectively). This study confirms that, based on its nutrient credentials, C. reinhardtii has great potential as a new superfood or ingredient for a food supplement.


1955 ◽  
Vol 33 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Eldon M. Boyd ◽  
Valmore Fontaine ◽  
J. Gilbert Hill

The investigation was designed to measure hydrolipotropic variations in the thymus gland of albino rats bearing Walker carcinoma 256. This was done upon 27 pairs of littermate albino rats, one of each pair inoculated and one not inoculated with Walker carcinoma 256. The life history of the tumor was evenly represented in the series. Tumor growth was found to be accompanied by a statistically significant increase in total body weight, due to water retention, and decrease in the weight of the thymus gland. The total amount of water, dry weight, total lipid, neutral fat, total fatty acids, free cholesterol, and phospholipid were significantly less in the thymus gland of tumor-bearing albino rats. The concentrations, per unit dry weight, of total lipid, neutral fat, and total fatty acids in the thymus gland were not significantly affected by tumor growth. The similar concentrations of water, total cholesterol, free cholesterol, and phospholipid were significantly increased in the thymus gland of tumor-bearing albino rats. These changes indicated a hydrolipotropic effect of the tumor upon the thymus gland. A pyramidal, up-and-down, change in the concentrations of phospholipid and the three cholesterol fractions in the thymus gland at T/RC coefficients of 30 to 60, together with a marked loss of weight by the gland, suggested the effect upon the thymus gland of factor(s) other than the hydrolipotropic influence.


Author(s):  
D. L. Holland ◽  
J. Davenport ◽  
J. East

The leatherback turtle, Dermochelys coriacea (L.) studied was a male, weighing 916 kg, with a total dorsal length of 291 cm. It was beached on the Welsh coast, UK in September 1988 and is currently the largest leatherback ever recorded.Total lipid formed between 87.5 and 95.4% of the dry weight of representative samples of the blubber and 43.0% and 4.9% of the liver and pectoral muscle respectively. High levels of neutral lipid in the liver (79.0% of the total lipid) as well as the blubber (87.6–99.9% of the total lipid) suggest an important energy storage function for these tissues.Overall, with the notable exception of 22:lwll, fatty acids which are found in a putative jellyfish diet of Rhizostoma, Amelia, Cyanea and Chrysaora are also present in the leatherback liver and muscle, blubber and other fatty tissues. Fatty acid 22:lwll is present in the jellyfish samples, but is absent or at trace levels only in the leatherback tissues (0.1–0.3% of the total fatty acids).The polyunsaturated fatty acids of the w3 series 20:5w3, 22:5w3 and 22:6w3 are well represented in leatherback adipose tissues, muscle and liver as well as in the jellyfish examined. The leatherback and jellyfish lipids are therefore marine in character, but are also similar to terrestrial animal lipid in having a high proportion of fatty acids of the w6 series, principally arachidonic acid, 20:4w6. The significant levels of 20:4w6 in jellyfish total lipid (9.7–20.0% of the total fatty acids) and in the leatherback neutral lipid (1.0–10.9% of the total fatty acids) and phospholipid (0.6–15.5% of total fatty acids) fractions of all tissues sampled suggests that arachidonic acid assumes more importance in food chain relationships involving leatherbacks than in other marine food webs such as those involving fish.


Parasitology ◽  
1970 ◽  
Vol 61 (2) ◽  
pp. 293-299 ◽  
Author(s):  
V. R. Southgate

In the uninfected hepatopancreas of L. truncatula 7·0–11·0% of the dry weight is lipid. Of the total lipid 60% is neutral lipid and 40% is phospholipid. Free fatty acid is the major neutral lipid component; triglycerides, diglycerides, monoglycerides, sterols and esterified sterols are also present. The phospholipids identified were phosphatidyl choline, phosphatidyl ethanolamine, lyso-phosphatidyl choline and sphingomyelin. The fatty acids were analysed by gas chromatography. The major fatty acid is C16 (palmitic) and 60% of the total fatty acids are saturated.In the hepatopancreas of L. truncatula infected with the rediae of F. hepatica, but with the rediae removed, 5·4–9·4% of the dry weight is lipid. Of this total lipid 73% is neutral lipid and 27% is phospholipid. All the fractions of neutral lipid, except the fatty acids are smaller than in the uninfected hepatopancreas. The fatty acids show an increase of 38%. The same phospholipids identified in the uninfected hepatopancreas are present, but all the fractions show a decrease in amount with the exception of the phosphatidyl choline fraction, which is present in approximately equal amounts in both the uninfected and the infected hepatopancreas. The major fatty acid is palmitic acid.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Tilen Zamljen ◽  
Aljaž Medič ◽  
Robert Veberič ◽  
Metka Hudina ◽  
Jerneja Jakopič ◽  
...  

Chilies are widely cultivated for their rich metabolic content, especially capsaicinoids. In our study, we determined individual sugars, organic acids, capsaicinoids, and total phenolic content in pericarp, placenta, and seeds of Capsicum annuum L., Capsicum chinense Jacq. and Capsicum baccatum L. by HPLC/MS. Dry weight varied in the cultivar ‘Cayenne’, with the first fruit having the lowest dry weight, with 4.14 g. The total sugar content and organic acid content did not vary among the fruits of all three cultivars. The cultivar ‘Cayenne’ showed differences in total phenolic and capsaicinoid content between fruits in the placenta, with the first fruit having the highest content of total phenolics (27.85 g GAE/kg DW) and total capsaicinoids (16.15 g/kg DW). Of the three cultivars studied, the cultivar ‘Habanero Orange’ showed the least variability among fruits in terms of metabolites. The content of dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin in the seeds of the second fruit was higher than that of the first fruit of the cultivar ‘Bishop Crown’. The results of our study provided significant insight into the metabolomics of individual fruits of the same chili plant. We have thus increased our understanding of how certain metabolites are distributed between fruits at different levels of the same plant and different parts of the fruit. This could be further investigated when chilies are exposed to different environmental stresses.


HortScience ◽  
1993 ◽  
Vol 28 (12) ◽  
pp. 1191-1193 ◽  
Author(s):  
Tommy E. Thompson ◽  
Samuel D. Senter ◽  
L.J. Grauke

Pollen from five cultivars of pecans [Carya illinoinensis (Wangenh.) K. Koch] was analyzed for cytoplasmic lipid classes and constituent fatty acids. Lipid classes in all cultivars included free fatty acids, triglycerides, and the phosphatide of inositol, serine, choline, glycerol, and ethanolamine. Triglycerides were the predominant class of lipids in all cultivars analyzed. Gas chromatography and mass spectral analysis were used to identify and quantify the fatty acids, which included palmitic, stearic, oleic, linoleic, and linolenic. Quantities of individual and total fatty acids varied greatly and were influenced significantly by cultivar, year, and location, as well as by interactions of main effects The percent composition of individual fatty acids was remarkably stable, despite wide variation in quantities of fatty acids. Therefore, pollen fatty acid ratios may be a valuable measure of taxonomic relationship across Carya sp. Total fatty acids varied from 2.53% to 0.25% of dry weight. Variability in stored energy in the form of lipids may affect orchard production.


1995 ◽  
Vol 5 (3) ◽  
pp. 250-253 ◽  
Author(s):  
James A. Okeyo ◽  
Mosbah M. Kushad

`Atlantic', `BelRus', `Kennebec', and `Superior' potatoes (Solarium tuberosum L.) were evaluated for ascorbic acid, soluble protein, and sugar content (reducing and nonreducing) at harvest, after 6 weeks of storage at 3C, and after 2 weeks of reconditioning at 25C. At harvest, ascorbic acid and soluble protein contents varied among the cultivars, with `Superior' containing the highest ascorbic acid (154 mg/100 g dry weight) and soluble protein content (46.4 mg·g−1 dry weight). Cold storage resulted in a drastic reduction (±50%) in ascorbic acid content in all four cultivars. Ascorbic acid also decreased during reconditioning of tubers, but the reduction was less than during cold storage. In contrast, soluble protein contents were not influenced significantly by cold storage or reconditioning, except for `BelRus' and `Kennebec', which had less protein after reconditioning. At harvest, glucose, fructose, and sucrose contents were at similar levels in all cultivars, except for fructose in `Kennebec', which was more than 2-fold higher. `Kennebec' also had a significantly lower specific gravity than the other cultivars. However, unlike the other cultivars, reconditioning of `Kennebec' tubers did not affect its specific gravity or total sugar content. Data suggest that `Kennebec's' poor processing quality may have resulted from a combination of low specific gravity and high total sugar content.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 8
Author(s):  
Heiðrún Eiríksdóttir ◽  
Magnús Örn Stefánsson ◽  
Hjörleifur Einarsson

The demand for novel sources of marine oils, which contain polyunsaturated fatty acids (PUFAs), has increased due to the realization of the importance of PUFAs, e.g., docosahexaenoic acid (DHA), in the human diet. However, the natural supply is limited. By-product peptones (BYPP) intended as a growth medium for the PUFA-producing strain Sicyoidochytrium minutum of family Thraustochytriaceae were produced after several experiments on the pancreatic digestion of bovine lungs and spleens. S. minutum was able to grow in a medium containing BYPP made from the pancreatic digestion of lung and spleen with glycerol, resulting in 1.14 ± 0.03 g cell dry weight (CDW)/L and 1.44 ± 0.24 g CDW/L, respectively, after 5 days of incubation at 25 °C, compared to 1.92 ± 0.25 g CDW/L in Basal Medium (BM) containing tryptone, peptone, and glycerol. The lipid content, obtained after growth in lung BYPP media with glycerol as a carbon source, was significantly higher (28.17% ± 1.33 of dry weight) than in the control basal medium (BM) (21.72% ± 2.45); however, DHA as a percentage of total fatty acids was lower in BYPP than in the control BM (25.24% ± 1.56 and 33.02% ± 2.37, respectively). It is concluded that low-value by-products from abattoirs can be used as ingredients for the cultivation of oligogenic Thraustochytriaceae.


Sign in / Sign up

Export Citation Format

Share Document