Characteristics and Mechanisms of Cu (II) Biosorption on Sludge in the Presence of Citrate

2012 ◽  
Vol 599 ◽  
pp. 598-601
Author(s):  
Peng Jia ◽  
Ma Hong Yu

The kinetics and thermodynamics of Cu(Ⅱ) biosorption on sludge in the presence of citrate were investigated. Biosorption mechanisms were characterized by biosorption characteristics and modern analysis means such as BET,FT-IR,XRD and SEM. The results show that the system of sludge and complexation of copper reaches equilibrium within 18h and the maximum removal rate of total copper is about 80%. Kinetic studies indicate that pseudo-second order model with correlation coefficients of 0.9959 best fits the biosorption process. The equilibrium of the system follows the Langmuir isotherm model. FT-IR spectral analysis indicates that amides, -OH, COO¯, silicate minerals, phosphate groups and polysaccharides serve as the main active groups. XRD and SEM analysis indicate the crystal shape of sludge changes and metal sediment can be found after biosorption. Adsorption mechanisms contain chelation, precipitation and ion-exchange.

Author(s):  
Rahmiana Zein ◽  
Mutia Khuratul Aini ◽  
Hermansyah Aziz

Biosorpsi zat warna Rhodamine B menggunakan cangkang Pensi (Corbicula moltkiana) telah dikaji. Percobaan dilakukan dengan system batch guna memperoleh kondisi optimum biosorspi zat warna. Kapasitas biosorpsi zat warna pada pH 2 adalah 0.9958 mg/g, dengan konsentrasi larutan mula-mula 150 mg/L waktu kontak 105 menit, massa biosorben 0.1 g, ukuran partikel 32 µm dan temperature pengeringan biosorben pada 75oC. Model isotherm Langmuir menunjukkan bahwa proses penyerapan berlangsung secara kimia dan biosorpsi homogeny dari adsorbat (Rhodamine B) pada permukaan biosorben membentuk lapisan tunggal dengan nilai R2 0.9966. Analisis XRF menunjukkan bahwa penurunan kadar unsur logam pada cangkang Pensi membuktikan bahwa proses biosorpsi berlangsung dengan pertukaran kation. Hasil analisis spektrum FT-IR membuktikan adanya interaksi antaramolekul Rhodamin B dengan gugus fungsi pada cangkang Pensi. Analisis dengan SEM memperlihatkan bahwa pori-pori cangkang Pensi telah terisi penuh oleh molekul Rhodamin B. Kondisi optimum biosorpsi telah diaplikasikan pada limbah kerupuk merah dengan kapasitas penyerapan sebesar 0,2835 mg/g.   The biosorption of Rhodamine B dyes by Pensi (Corbicula moltkiana) shell has been investigated. The experiment was conducted in batch sistem in order to obtain the optimum conditions of dye biosorption. Biosorption capacity of dye was 0.9958 mg/g at pH 2, initial concentration 150 mg/L, contact time 105 minutes, biosorbent mass 0.1 gram, particle size 32 µ m and biosorbent drying temperature was at 75oC. The Langmuir Isotherm model showed chemisorption and homogeneous biosorption process of adsorbates onto the biosorbent surface formed monolayer dye molecules on the biosorbent surface with R2 value was 0.9966. XRF analysis showed that reduction of metals unsure quantity of pensi shell indicated biosorption process was occupied through cationic exchange. The result of FTIR spectra analysis indicated an interaction between Rhodamin B molecules and functional group of pensi shell. SEM analysis showed that the pensi shell pores were completely filled by Rhodamine B molecules. The optimum condition of biosorption has been aplicated in red chips wastewater industry with biosorption capacity was 0.2835 mg/g.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2453
Author(s):  
Ri-si Wang ◽  
Ya Li ◽  
Xi-xiang Shuai ◽  
Rui-hong Liang ◽  
Jun Chen ◽  
...  

The development of effective heavy metal adsorbents has always been the goal of environmentalists. Pectin/activated carbon microspheres (P/ACs) were prepared through simple gelation without chemical crosslinking and utilized for adsorption of Pb2+. Scanning electron microscopy (SEM) revealed that the addition of activated carbon increased the porosity of the microsphere. Texture profile analysis showed good mechanical strength of P/ACs compared with original pectin microspheres. Kinetic studies found that the adsorption process followed a pseudo-second-order model, and the adsorption rate was controlled by film diffusion. Adsorption isotherms were described well by a Langmuir isotherm model, and the maximum adsorption capacity was estimated to be 279.33 mg/g. The P/ACs with the highest activated carbon (P/AC2:3) maintained a removal rate over 95.5% after 10 adsorption/desorption cycles. SEM-energy-dispersive X-ray spectrum and XPS analysis suggested a potential mechanism of adsorption are ion exchange between Pb2+ and Ca2+, electronic adsorption, formation of complexes, and physical adsorption of P/ACs. All the above results indicated the P/ACs may be a good candidate for the adsorption of Pb2+.


2017 ◽  
Vol 77 (3) ◽  
pp. 727-738 ◽  
Author(s):  
Krishna Kumari Swain ◽  
Pravat Manjari Mishra ◽  
Aparna Prabha Devi

Abstract The high demand for rare earth elements (REEs) used in various advanced materials implies demand for increased production of REEs or the recycling of solutions to recover the REEs they contain. In this study, the biosorption of Pr(III) from aqueous solution by bark powder of Terminalia arjuna was examined in a batch system as a function of metal concentration, biosorbent dosage, pH and contact time. Results showed that T. arjuna bark powder has a high affinity for adsorbing Pr(III): more than 90% at pH 6.63. The adsorption of Pr(III) by T. arjuna bark powder was investigated by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The kinetics of the biosorption process was tested with pseudo-first-order and pseudo-second-order models, and the results showed that the biosorption process was better fitted to the pseudo-second-order model. From Fourier transform infrared spectroscopy (FT-IR) analysis, it is confirmed that the biomolecules of T. arjuna bark powder are involved in the biosorption process of Pr(III) metal ions.


2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


Author(s):  
Joshua O. Ighalo ◽  
Ibrahim O. Tijani ◽  
Oluwaseun J. Ajala ◽  
Fisayo O. Ayandele ◽  
Omodele A. Eletta ◽  
...  

Background: Modified bio-based adsorbents from plant sources can be used for pollution remediation by adsorption due to their low cost and availability in large quantities. Objective: In this study, the competitive biosorption of Pb(II) and Cu(II) by Micropogonias undulates functionalised fish scales (FFS) was conducted. The functionalisation was done by wet impregnation with Fe2+. Method: The biosorbent was characterised by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) and Branueur–Emmett–Teller (BET) analyses. Results: The major constituents in the FFS were calcium and phosphorus from the collagen and apatite on the scales. Optimum removal efficiency for both metals was >99% at 10 g/l dosage. It was observed that the Langmuir isotherm model and the pseudo second order kinetics model were the best fit for the experimental data. The monolayer adsorption capacity of FFS for Pb(II) and Cu(II) was observed to be 96.15 mg/g and 100 mg/g respectively. Conclusion: The study revealed that the competitive biosorption of heavy metals can be achieved (at a good adsorption capacity) using functionalised Micropogonias undulates fish scales.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2741
Author(s):  
Pengcheng Lv ◽  
Ruihong Meng ◽  
Zhongyang Mao ◽  
Min Deng

In this study, the hydrated sodium aluminosilicate material was synthesized by one-step hydrothermal alkaline desilication using fly ash (FA) as raw material. The synthesized materials were characterized by XRD, XRF, FT-IR and SEM. The characterization results showed that the alkali-soluble desilication successfully had synthesized the sodium aluminosilicate crystalline (N-A-S-H) phase of sodalite-type (SOD), and the modified material had good ionic affinity and adsorption capacity. In order to figure out the suitability of SOD as an adsorbent for the removal of ammonium and phosphorus from wastewater, the effects of material dosing, contact time, ambient pH and initial solute concentration on the simultaneous removal of ammonium and phosphorus are investigated by intermittent adsorption tests. Under the optimal adsorption conditions, the removal rate of ammonium was 73.3%, the removal rate of phosphate was 85.8% and the unit adsorption capacity reached 9.15 mg/L and 2.14 mg/L, respectively. Adsorption kinetic studies showed that the adsorption of ammonium and phosphorus by SOD was consistent with a quasi-secondary kinetic model. The adsorption isotherm analysis showed that the equilibrium data were in good agreement with the Langmuir and Freundlich model. According to thermodynamic calculations, the adsorption of ammonium and phosphorus was found to be a heat-absorbing and spontaneous process. Therefore, the preparation of SOD by modified FA has good adsorption properties as adsorbent and has excellent potential for application in the removal of contaminants from wastewater.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1449 ◽  
Author(s):  
Xianchun Hu ◽  
Xianfeng Du

Microporous starch (MPS) granules were formed by the partial hydrolysis of starch using α–amylase and glucoamylase. Due to its biodegradability and safety, MPS was employed to adsorb tea polyphenols (TPS) based on their microporous characteristics. The influences of solution pH, time, initial concentration and temperature on the adsorptive capacity were investigated. The adsorption kinetics data conformed to the pseudo second–order kinetics model, and the equilibrium adsorption data were well described by the Langmuir isotherm model. According to the fitting of the adsorption isotherm formula, the maximum adsorption capacity of TPS onto MPS at pH 6.7 and T = 293 K was approximately 63.1 mg/g. The thermodynamic parameters suggested that the adsorption of TPS onto MPS was spontaneous and exothermic. Fourier transform infrared (FT–IR) analysis and the thermodynamics data were consistent with a physical adsorption mechanism. In addition, MPS-loaded TPS had better stability during long-term storage at ambient temperature.


2019 ◽  
Vol 80 (2) ◽  
pp. 300-307
Author(s):  
Di Zhang ◽  
Jiaxin Liu ◽  
Shibei Zhu ◽  
Huixin Xiong ◽  
Yiqun Xu

Abstract The aim of this work is to study the performances of isomeric α-, β-, and γ-FeOOH (goethite, akaganéite and lepidocrocite, including five samples named as Gth1 and Gth2, Aka1 and Aka2, and Lep, respectively) for removing hexavalent chromium (Cr(VI)) from aqueous solutions. The adsorption mechanisms were explored by kinetic and isothermal experiments. Adsorption efficiencies under the different pH values, anions, and the levels of adsorbate and adsorbent were also measured. Results showed that the Cr(VI) adsorption by isomeric FeOOH could be best described by pseudo-second-order kinetic model. The processes of Cr(VI) isothermal adsorption could be greatly fitted by the Langmuir and Freundlich equations with the high correlation coefficients of R2 (>0.92). Also, there were the optimum pH values of 3.0–8.0 for FeOOH to adsorb Cr(VI), and their adsorption capacities were tightly related with the active sites of adsorbents. Cr(VI) adsorptions by these adsorbents were easily influenced by H2PO4–, and then SO42–, while there were little effects by Cl–, CO32– and NO3–. These obtained results could provide a potentially theoretical evidence for isomeric FeOOH materials applied in the engineering treatment of the polluted chromate-rich waters.


2009 ◽  
Vol 610-613 ◽  
pp. 65-68 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin

Konjac glucomannan (KGM) was converted into water insoluble konjac glucomannan (WIKGM) by treating with NaOH through completely deacetylated reaction. Adsorption study was carried out for the adsorption of Pb2+ from aqueous solution using water insoluble konjac glucomannan. The influences of pH, contact time, temperature and initial Pb2+ concentration on the absorbent were studied. Results of kinetic data showed that the Pb2+ adsorption rate was fast and good correlation coefficients were obtained for the pseudo second-order kinetic model. The equilibrium process was described well by the Langmuir isotherm model with maximum adsorption capacity of 9.18 mg/g on WIKGM at 25°C.


Author(s):  
Qingqing Liu ◽  
Xiaoyan Li

The activated MgO was synthesized by microwave homo-precipitator method and characterized by SEM, EDS and FT-IR methods. It was used to adsorption of U(VI) from aqueous solution with batch system. The paper discussed the effect of pH, temperature, contact time, adsorbent dose and initial U(VI) concentration on the adsorption. The results showed that activated MgO has good adsorption capacity for U(VI), the removal rate and equilibrium adsorption capacity reached 83.5% and 84.04mg·g−1 at pH 5.0, 15mg dose and 313K,respectively. The adsorption kinetics of U(VI) onto activated MgO were better fitted with pseudo-second-order kinetic.The adsorption isotherm data were fitted well to Freundlich isotherm model.The thermodynamic parameters showed that the adsorption process is endothermic and spontaneous.


Sign in / Sign up

Export Citation Format

Share Document