Effect of Rare Elements on Corrosion Behavior of SPCC in CSP

2013 ◽  
Vol 634-638 ◽  
pp. 1698-1703
Author(s):  
Yan Feng Zhou ◽  
Wei Jian Qiu ◽  
Wei Xiao Li ◽  
Jiang Xie

The corrosion process of rare earth (RE) SPCC steel and SPCC steel in CSP in 3.5% NaCl solutions was investigated by SEM, EDS, XRD and polarization curve measurements. The results show that grain refinement can be obtained, the inclusions will be formed, and the electrochemical corrosion of microscopic region is weakened and therefore the corrosion resistance of SPCC steel could be improved by addition of RE. The rust layer of RE treated steel generated in the solution is more compact, the α-FeOOH content in rust layer is higher, and the content of activated γ-FeOOH and β-FeOOH is smaller, which are helpful to protect the steel. It also shows that current densities of SPCC steel is lower and the corrosive tendency will decrease with the addition of RE, which also makes the corrosion resistance of steel improved.

2009 ◽  
Vol 79-82 ◽  
pp. 957-960 ◽  
Author(s):  
Li Jie Yue ◽  
Wei Gong Chen

The weather resistance of 10CuPRE、10CuP and Q235 steels were studied by dry-wet cyclic immersion test. The corrosion resistance mechanism of rare earth Cu-containing weathering steel was studied through electrochemical polarization test, scanning electron microscope(SEM) and X ray diffraction(XRD). The results show the small and spherical rare earth oxysulfides replace the elongated MnS inclusions in the rare earth weathering steel. Less and fewer rare earth oxysulfides heavily decrease pitting susceptibility and rate of pit propagation. So the electrochemical corrosion of microarea in the steel matrix is weakened after rare earth was added in the Cu-containing weathering steel. The inner rust layer of rare earth weathering steel is more compact and uniform than that of weathering steel without rare earth. The main corrosion product on the rare earth weathering steel is α-FeOOH. The formation of the steady corrosion product is promoted by rare earth, which result in that the protective property of the inner rust layer on weathering steels is enhanced. As a result, the corrosion resistance of Cu-containing weathering steel is improved by rare earth elements.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yucong Ma ◽  
Mohd Talha ◽  
Qi Wang ◽  
Zhonghui Li ◽  
Yuanhua Lin

Purpose The purpose of this paper is to study systematically the corrosion behavior of AZ31 magnesium (Mg) alloy with different concentrations of bovine serum albumin (BSA) (0, 0.5, 1.0, 1.5, 2.0 and 5.0 g/L). Design/methodology/approach Electrochemical impedance spectroscopy and potential dynamic polarization tests were performed to obtain corrosion parameters. Scanning electrochemical microscopy (SECM) was used to analyze the local electrochemical activity of the surface film. Atomic force microscope (AFM), Scanning electron microscope-Energy dispersive spectrometer and Fourier transform infrared spectroscopy were used to determine the surface morphology and chemical composition of the surface film. Findings Experimental results showed the presence of BSA in a certain concentration range (0 to 2.0 g/L) has a greater inhibitory effect on the corrosion of AZ31, however, the presence of high-concentration BSA (5.0 g/L) would sharply reduce the corrosion resistance. Originality/value When the concentration of BSA is less than 2.0 g/L, the corrosion resistance of AZ31 enhances with the concentration. The adsorption BSA layer will come into being a physical barrier to inhibit the corrosion process. However, high-concentration BSA (5.0 g/L) will chelate with dissolved metal ions (such as Mg and Ni) to form soluble complexes, which increases the roughness of the surface and accelerates the corrosion process.


2017 ◽  
Vol 35 (6) ◽  
pp. 455-462 ◽  
Author(s):  
Bo Gao ◽  
Lei Wang ◽  
Yang Liu ◽  
Xiu Song ◽  
Shu-Yu Yang ◽  
...  

AbstractThe corrosion properties of γ′-strengthened Co-xNi-Al-W-Cr (where x=15, 20, 25, and 30 at.%) superalloys were investigated in the mixture of 75 wt.% Na2SO4+25 wt.% NaCl at 900°C. The results showed that the corrosion behavior is associated with both sulfuration and oxidation processes. It was demonstrated that increasing the addition of Ni effectively promoted the formation of continuous Al2O3 scales, so that the hot corrosion resistance could be improved. When Ni content is more than 20 at.%, a large amount of Ni3S2 precipitates during the corrosion process. Sulfuration can destroy the integrity of the corrosion layer and increase the activity of oxygen. In this way, the internal oxidation of the alloys becomes more serious. Therefore, it is recommended that the optimum Ni addition is about 20 at.% for new type Co-Ni-Al-W-Cr superalloys.


2014 ◽  
Vol 906 ◽  
pp. 275-282
Author(s):  
Zhu Huan Yu ◽  
Jun Feng Qiang ◽  
Hui Lu Li

The effect of graphite shapes on the electrochemical corrosion behavior of cast iron was studied by means of weight loss tests, electrochemical measurements and electron microscopy. It was found that the electrochemical corrosion behavior of graphite is significantly different from one other, and the corrosive potential difference between carbide ad the matrix is the main driving force of the different phase corrosions. Among them, the center A type and edge D type graphite exhibited the highest corrosion resistance. The corrosion of white iron is worst, because there are so many type carbides in white iron and so there is an obvious tendency to produce micro-cell in white iron.


2009 ◽  
Vol 79-82 ◽  
pp. 1075-1078
Author(s):  
Nai Ming Lin ◽  
Fa Qin Xie ◽  
Tao Zhong ◽  
Xiang Qing Wu ◽  
Wei Tian

The rare earth (RE) modified chromizing coating was obtained on P110 oil casing tube steel (P110 steel) substrate by means of pack cementation technique to enhance the resistance against corrosion of P110 steel. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) were employed to research microstructure, composition distribution and phase constitution of the chromizing coating. The effect of minor addition of RE on the microstructure of chromizing was discussed. Corrosion resistance of chromizing coating was investigated and compared with that of bare P110 steel via electrochemical corrosion and immersion corrosion in simulated oilfield brine solution, respectively. The results showed that a uniform, continuous and compact coating was formed on P110 steel. The coating with RE addition was more compact than that of the coating added no RE, and a small amount of RE addition could promote the chromizing procedure notably. From SEM and EDX investigation, it had been confirmed that the coating was composed of two different layers, an out layer and an inner layer; the coating mainly contains Fe and Cr; the concentration of Cr decreased as the distance from the surface increased, yet Fe presented the inverse trend. XRD analysis indicated the coating was built up by (Cr, Fe)23C6 referring to the out layer, (Cr, Fe)7C3, Cr7C3 and α-(Cr, Fe) corresponding to the inner layer. Electrochemical corrosion consequence was obtained as follows: the self-corroding electric potential of chromizing coating was higher, and the corrosion current density was lower than that of bare P110 steel, which revealed that chromizing coating had better anti-corrosion performance; immersion corrosion results demonstrated the mass loss of chromized P110 steel was lower, and this meant that chromizing coating had a better corrosion resistance than that of bare P110 steel on the experimental condition. A compact (Cr, Fe)xCy coating can be fabricated by pack cementation technique. As a result of minor RE addition, microstructure and corrosion resistance of the chromizing coating are improved obviously.


2011 ◽  
Vol 299-300 ◽  
pp. 427-431
Author(s):  
Yun Li ◽  
Shi Zhi Shang ◽  
Ming Cheng ◽  
Liang Xu ◽  
Shi Hong Zhang

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.


2021 ◽  
Vol 11 (18) ◽  
pp. 8668
Author(s):  
Jinbo Li ◽  
Ziying Zhu ◽  
Hongwei Chen ◽  
Shaojie Li ◽  
Hongyan Wu ◽  
...  

Corrosion behavior of 60Si2Mn-A and 60Si2Mn-B in simulated industrial atmospheric environment was investigated by alternate immersion corrosion test and electrochemical method. The phase, morphology, characteristics of corrosion products, and the distribution of Cr, Cu, and Ni in the corrosion products of experimental steel were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA). The results show that the phase of rust layer is Fe3O4 and γ-FeOOH in the early stage and then changes to α-FeOOH and γ-FeOOH in the later stage; the size of the rust layer with corrosion resistance of 60Si2Mn is less than 60Si2Mn; the Cr element accumulates in the rust layer of the experimental steel in the early stage of corrosion resistance; and Cu, Ni, and Cr in the corrosion resistance 60Si2Mn are concentrated in the rust layer near the substrate In the later stage of corrosion. As the corrosion cycle is prolonged, the corrosion potential and the resistance of the rust layer of the experimental steel increases, and the corrosion current decreases; in the same corrosion cycle, the corrosion potential and corrosion resistance of 60Si2Mn-B are greater than 60Si2Mn, and the corrosion current is less than 60Si2Mn.


2020 ◽  
Vol 67 (5) ◽  
pp. 465-472
Author(s):  
Wei Luo ◽  
Lei Hu ◽  
Yimin Xv ◽  
Jian Zhou ◽  
Wentao Xv ◽  
...  

Purpose This paper aims to focus on an assessment of the electrochemical corrosion performance of bulk NC copper in a variety of corrosion environments. Design/methodology/approach The electrochemical corrosion behavior of bulk nanocrystalline (NC) copper prepared by inert gas condensation and in situ warm compress technique was studied by using potentiodynamic polarization and electrochemical impedance spectroscopy tests in de-aerated 0.1 M NaOH solution. Findings NC copper exhibited a typical active-passive-transpassive behavior with the formation of duplex passive films, which was qualitatively similar to coarse-grain (CG) copper. Although a compact passive film formed on NC copper surface, the corrosion resistance of NC copper was lower in comparison with CG copper. The increase in corrosion rate for NC copper was mainly attributed to the high activity of surface atoms and intergranular atoms. These atoms led to an enhancement of passive ability and an increase of dissolution rate of passive film in oxygen-deficiency solution. For NC copper, the corrosion resistance decreased as grain size increased in NC range. Originality/value The difference in corrosion resistance between bulk NC copper and its CG counterpart is dependent upon the corrosion solution. In a previous work, the potentiodynamic polarization tests revealed that NC copper bulks (grain size 48, 68, 92 nm) had identical corrosion resistance to CG copper bulk in naturally aerated 0.1 M NaOH solution. The results might be related to the dissolved oxygen in the medium.


2013 ◽  
Vol 734-737 ◽  
pp. 2332-2337
Author(s):  
Rui Hua Guo ◽  
Fang Sheng Liu ◽  
Lin Min Wang

This article by orthogonal experimental method to determine the composition of chromate conversion and use of electrochemical method of electrochemical corrosion of the film discussed the substrate in different components, content, time and pH of chromate conversion coating of corrosion resistance. Orthogonal to determine the best experimental chromate conversion solution by adding the rare earth element cerium and lanthanum salt, and discuss the effects of rare earth elements cerium and lanthanum chromate conversion film on the anti-corrosion. The results show that in CrO3 5.4 g/L, NaF 0.5 g/L, K3Fe (CN)6 0.5 g/L, pH 1, conversion time is three minutes, there is a better corrosion resistance. The rare earth elements in a chromate conversion solution, La2(CO3)3 to 0.2 g/L chromate conversion coating of the anti-corrosion better.


Sign in / Sign up

Export Citation Format

Share Document