scholarly journals Corrosion Behavior of Corrosion-Resistant Spring Steel Used in High Speed Railway

2021 ◽  
Vol 11 (18) ◽  
pp. 8668
Author(s):  
Jinbo Li ◽  
Ziying Zhu ◽  
Hongwei Chen ◽  
Shaojie Li ◽  
Hongyan Wu ◽  
...  

Corrosion behavior of 60Si2Mn-A and 60Si2Mn-B in simulated industrial atmospheric environment was investigated by alternate immersion corrosion test and electrochemical method. The phase, morphology, characteristics of corrosion products, and the distribution of Cr, Cu, and Ni in the corrosion products of experimental steel were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA). The results show that the phase of rust layer is Fe3O4 and γ-FeOOH in the early stage and then changes to α-FeOOH and γ-FeOOH in the later stage; the size of the rust layer with corrosion resistance of 60Si2Mn is less than 60Si2Mn; the Cr element accumulates in the rust layer of the experimental steel in the early stage of corrosion resistance; and Cu, Ni, and Cr in the corrosion resistance 60Si2Mn are concentrated in the rust layer near the substrate In the later stage of corrosion. As the corrosion cycle is prolonged, the corrosion potential and the resistance of the rust layer of the experimental steel increases, and the corrosion current decreases; in the same corrosion cycle, the corrosion potential and corrosion resistance of 60Si2Mn-B are greater than 60Si2Mn, and the corrosion current is less than 60Si2Mn.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 117 ◽  
Author(s):  
Guoqiang Ma ◽  
Qiongyao He ◽  
Xuan Luo ◽  
Guilin Wu ◽  
Qiang Chen

The effect of recrystallization annealing on corrosion behavior of Ta-4%W alloy was studied. It is found that the deformed sample contains high dense dislocations and dislocation boundaries. During annealing, these dislocations and dislocation boundaries are replaced by recrystallizing grains until the alloy is fully recrystallized. Both the anodic dissolution and the cathodic activity is much more blocked. The corrosion potential gradual shift towards negative values and corrosion current density decrease, while polarization resistance increases after annealing, indicating enhanced corrosion resistance of the alloy. Such an enhancement is caused by the increase of low-Σ coincide site lattice boundaries and decrease of dislocations and dislocation boundaries.


2011 ◽  
Vol 239-242 ◽  
pp. 3062-3068 ◽  
Author(s):  
Tao Li ◽  
Hui Ping Ren ◽  
Zi Li Jin ◽  
Xiang Qian Li ◽  
Meng Qin

The effects of rare earth elements (RE) on corrosion behavior of Q345B steel at marine atmospheric environment in Compact strip production (CSP) technology was studied using alternate immersion test in this paper. The influences of RE on the microstructure, the components of corrosion products, the corrosion dynamic laws as well as the electrochemical properties were also investigated by optical microscope, SEM, XRD, polarization curve and EIS measurements. The results show that the microstructure of Q345B steel in CSP is finer and the corrosion is mitigated due to relatively compact corrosion products with the addition of RE. The corrosion current density of Q345B steel with RE is lower than that of Q345B steel without RE and the corrosion resistance of Q345B in CSP is improved to a certain extent by RE.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 781
Author(s):  
Weiyan Jiang ◽  
Wenzhou Yu

A gradient Mg-8 wt % Si alloy, which was composed of the agglomerated Mg2Si crystals coating (GMS8-1) and the eutectic Mg–Si alloy matrix (GMS8-2), was designed for biodegradable orthopedic implant materials. The bio-corrosion behavior was evaluated by the electrochemical measurements and the immersion tests. The results show that a significant improvement of bio-corrosion resistance was achieved by using the gradient Mg–Si alloy, as compared with the traditional Mg-8 wt % Si alloy (MS8), which should be attributed to the compact and insoluble Mg2Si phase distributed on the surface of the material. Especially, GMS8-1 exhibits the highest polarization resistance of 1610 Ω, the lowest corrosion current density of 1.7 × 10−6 A.cm−2, and the slowest corrosion rate of 0.10 mm/year. In addition, GMS8-1 and GMS8-2 show better osteogenic activity than MS8, with no cytotoxicity to MC3T3-E1 cells. This work provides a new way to design a gradient biodegradable Mg alloys with some certain biological functions.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Beibei Han ◽  
Mengyuan Yan ◽  
Dongying Ju ◽  
Maorong Chai ◽  
Susumu Sato

The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and deposition times, was prepared by the ion beam deposition (IBD) method, which has the advantage of high adhesion because of the graded interface mixes at the atomic level. The chemical characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM, AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at 0.8 V, 90 °C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4 corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a corrosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of 1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3 element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC bipolar plates.


2017 ◽  
Vol 904 ◽  
pp. 80-84 ◽  
Author(s):  
Peng Cheng ◽  
Yun Gui Chen ◽  
Wu Cheng Ding

The corrosion behavior and microstructure of hot extruded Mg-5 wt.%Sn-4 wt.%Al-2 wt.%Ce alloy by rapid solidification ribbon (RS-EX TAE542) are investigated. The results shows that corrosion resistance of RS-EX alloy is remarkably improved, compared with that of hot extruded TAE542 alloy by homogenized ingot (HI-EX TAE542). Relatively compact corrosion products and bedded corrosion surface of RS-EX alloy is connected with the fine grains and uniform particles caused by rapid solidification, and they can suppress the corrosion reactions.


2010 ◽  
Vol 663-665 ◽  
pp. 473-476
Author(s):  
Shu Qi Zheng ◽  
Chang Feng Chen ◽  
Rui Jing Jiang ◽  
Dan Ni Wang

In the environment with H2S/CO2 or Na2S, the corrosion behavior of Lanthanum hexaboride (LaB6) was investigated by electrochemistry methods. The results indicated that the corrosion potential (Ecorr) and Rf of LaB6 increased as the partial pressure of H2S increased, while the corrosion current density (Icorr) decreased. In the environment containing Na2S, as the content of Na2S increased, the corrosion potential (Ecorr) and Rf of LaB6 decreased, while the corrosion current density (Icorr) increased. Thus, the addition of H2S into the environment with H2S/CO2 would inhibit the corrosion of LaB6; while in the environment containing Na2S, the increasing of the content of Na2S would accelerate the corrosion of LaB6.


2019 ◽  
Vol 66 (6) ◽  
pp. 819-826
Author(s):  
Khashayar Tabi ◽  
Mansour Farzam ◽  
Davood Zaarei

Purpose Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the corrosion behavior of dacromet-coated steel. Design/methodology/approach Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and salt spray were carried out. SEM was used to study the morphological appearance of the surface. Findings The EIS behavior indicated that solvent-cleaned dacromet-coated steel sealed with potassium silicate showed that the corrosion current density was 2.664E − 5 A.cm2 which was reduced to 8.752E − 6 A.cm2 and the corrosion rate, which was 2.264E − 2 mm.year−1, was reduced to 7.438E − 3 mm.year−1 in NaCl 3.5 wt.per cent. EIS was used in NaCl 3.5 wt.%, and the Bode plot characteristics showed that the corrosion protection of solvent-cleaned, dacromet-coated steel was enhanced when sealed with potassium silicate. The EDS results of salt-sprayed, solvent-cleaned samples after 10 days indicated that the main corrosion products are composed of SiO2, ZnO and Al2O3. Research limitations/implications The detection of Li element in EDS was not possible because of the device limitation. Originality/value The current paper provides new information about the sealing properties of potassium silicate and its effects on the corrosion resistance of dacromet coating, which is widely used in many industries such as the automobile industry.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 549 ◽  
Author(s):  
Zihan Chen ◽  
Chonggao Bao ◽  
Guoqing Wu ◽  
Yongxin Jian ◽  
Li Zhang

The strength of Mg–Li alloy is greatly improved by the composite strengthening of intermetallic compound YAl2 particles, but the low corrosion resistance of Mg–Li alloy is still the main factor that restricts the application of the alloy and its composites. In this paper, the effect of YAl2 particles on the corrosion behavior of Mg–Li alloy was systematically investigated. The results showed that the corrosion resistance of YAl2p/LA143 composite could be significantly improved, accounting for the formation of a transitional interface layer by adding YAl2 particles. The diffusion of yttrium and aluminum atoms from YAl2 particulates improved the stability of the surface film and enhanced the adhesion between the corrosion products and the substrate, which hindered further expansion of pitting.


2013 ◽  
Vol 747-748 ◽  
pp. 270-275
Author(s):  
Qiang Fan ◽  
Wei Liang ◽  
Li Ping Bian ◽  
Man Qing Cheng

In view of low strength and poor corrosion resistance of Mg alloys, a Mg-12Al-0.7Si alloy was designed, fabricated and subjected to equal channel angular pressing (ECAP) in order to refine the microstructure. Microstructure observation and electrochemical performance test were conducted to investigate the influence of the microstructural variation subjected to multi-pass ECAP processing on the corrosion behavior of the alloy. The results showed that both α-Mg matrix and β-Mg17Al12of the alloy were significantly refined after processing for different passes (2,4,6,8) through route BC, and the 4-pass ECAPed alloy in 3.5% NaCl solution presents the lowest weight loss, lower corrosion current and higher corrosion potential in the polarization curves. The reason for high corrosion resistance of 4-pass ECAPed alloy and the effects of grain size of the matrix and the particle size, distribution of second phase and dynamic precipitates on corrosion behavior of the alloy were discussed.


Sign in / Sign up

Export Citation Format

Share Document