A Review on the Properties of Bricks Prepared with Recycled Waste Materials - Postearthquake Waste Consideration

2013 ◽  
Vol 661 ◽  
pp. 108-111 ◽  
Author(s):  
Xiao Zhao ◽  
Qing Yuan Wang ◽  
Yong Jie Liu

A huge number of buildings collapsed during the earthquake in Wenchuan. Recently, solid waste management of these post-earthquake wastes has becomes a major management concerns in Sichuan. As yet, no specific plan has been formulated for managing those components of the disaster. In addition to this, immediate efforts are needed to rebuild the collapsed houses within the city. Therefore, this paper aims to overview of some of the research published regarding the use of recycled waste or by-products in concrete blocks or bricks production. The mechanical properties such as compressive strength, tensile strength, water absorption and shrinkage are presented. Studies show that bricks and blocks can be made with recycled waste or by-products.

2020 ◽  
Vol 398 ◽  
pp. 83-89
Author(s):  
Dalia Adil Rasool ◽  
Mais A. Abdulkarem ◽  
Mohammed Ali Abdulrehman

Iron Filings (IF) and brick powder (BP) waste materials taken from steel workshops and factories and demolition of buildings respectively .create serious environmental problems ,so the main aim of this paper is to estimate the potency of employing the mixing of waste materials (Iron Filings and brick-powder) altogether as partly replace of cement and the fine-aggregate respectively in the composition of concrete which were mixed with a ratio of (1:2:4) and (W/C) ratio equal to (0.45). In this study the cement has been replaced by Iron Filings in the proportion of ( 10%, 20%,30 %and 40%) and fine aggregate replaced by waste brick powder in the proportion of (0%,5%,10%, and 15%) by weight of concrete mix simultaneously. In this paper, the split tensile strength , the compressive strength and flexural strength of the concretes mixtures were specified. The main results of this paper appeared that the (cement and sand) can be partially replaced by ( Iron Filings and brick-powder) in the concrete mixture and it has achieved the optimum percentage of replacement by (30%IF+10%BP). So the utilization of solid waste is required in an attempt to equilibrate between the construction request and environmental sustainability and as well as saving landfill space.


An attempt has been made in this paper to study the effect on the mechanical properties of the concrete and hollow concrete block when different types of fibres were added to the mix. The two different types of fibres added include Steel fibres with hooked end and of length 60mm at five different fibre ratios of 2.5%, 2.75%, 3.0%, 3.25% and 3.5% and Nylon fibres having a length of 18mm at the content of 0.5%, 0.75%, 1.0%, 1.25% and 1.50%. The concept of fibre hybridization was also analyzed and the effect was studied by preparing concrete mix with various percentage combinations of steel and nylon fibres at a total fibre ratio of 3% by weight of cement. The investigation focused on finding the optimum values of fibres to be added and also carried out the compressive strength and tensile strength of concrete with and without fibres. The compressive strength of hollow concrete blocks made with and without fibres was also analyzed. The samples of concrete and hollow concrete blocks were cast and immersed in water for a curing period of 28 days. The results on strength of fibre added concrete and hollow concrete block obtained was compared with the control mix result and the study concludes that the steel fibre and nylon fibre added concrete and hollow concrete block showed an improvement in the mechanical properties for each fibre ratio considered. Out of the various combinations of steel and nylon fibre tried, the best compressive strength improvement was exhibited by the concrete mix with 3% of the steel fibre without any addition of nylon fibres while the best tensile strength improvement was shown by the concrete mix with 2.25% of steel fibre and 0.75% of nylon fibre.


Author(s):  
Muhammad Rizwan

This research work aims to investigate experimentally the mechanical properties of solid concrete blocks as an individual unit and assembly (block masonry) employing different mortar mix ratios. The material properties of the concrete block unit, such as compressive strength and unit weight were explored by taking three samples from the four local factories. The block masonry assemblages were subjected to various load patterns for the evaluation of compressive strength, diagonal tensile strength and shear strength. For the bond, four types of mortars i.e., cement – sand (1:4), cement – sand (1:8), cement – sand – khaka (1:2:2) and cement – sand – khaka (1:4:4) were used in the joints of concrete block masonry assemblages. (Khaka is a by-product formed in the stone crushing process). For each type of mortar, three samples of block masonry were fabricated for compressive strength, shear strength and diagonal tensile strength, and tested in the laboratory. It is observed that the replacement of sand by khaka enhanced the mechanical properties of masonry.


2018 ◽  
Vol 65 ◽  
pp. 05027 ◽  
Author(s):  
Aliyu Usman ◽  
Muslich Hartadi Sutanto ◽  
Madzlan Napiah

The utilization of a large amount of waste in concrete production is considered the best alternative for solving the issues associated with improper disposal. Plastic waste is considered as one of such waste and could be utilized in several applications. The drawback associated with the utilization of a large amount of plastic waste is the decrease in the mechanical properties of the mortar or concrete as the case may be. This paper presents a detailed review about waste recycled plastics and research published on the effect of non-irradiated recycled plastic on the mechanical properties of cement mortar and cement concretes as either fillers or aggregates and the application of gamma radiation on the recycled plastic waste. The effect of recycled waste plastic on compressive strength, flexural strength and splitting tensile strength is discussed in this paper.


2019 ◽  
Vol 93 ◽  
pp. 02008
Author(s):  
Tribikram Mohanty ◽  
Sauna Majhi ◽  
Purnachandra Saha ◽  
Bitanjaya Das

Due to rapid industrialization extensive quantity of waste materials like fly ash, silica fume, rice ash husk, and ferrochrome ash etc. are generated. Ferrochrome ash is generated from Ferro-alloy industry and fly-ash is produced in thermal power plants are alternative materials which have the potential of being utilized in concrete as a mineral admixture. The present investigation considers the combined influence on strength of concrete using various percentage fly ash and ferrochrome ash as partial replacement of cement. Experiments are carried out to get mechanical properties of ordinary Portland cement by replacement of fly ash by 10%, 20%, 30 % and 3% by ferrochrome ash. Mechanical properties are measured by determining compressive strength, split tensile strength and flexural strength. It can be inferred from the study that a small amount of ferrochrome ash mixed with 30 % fly-ash gives higher compressive strength as compared to fly ash alone. Addition of ferrochrome ash also increases the split tensile strength of concrete. Since ferrochrome ash and fly-ash are both industrial waste, utilization of these waste materials reduced the burden of dumping and greenhouse gas and thereby produce sustainable concrete.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


2021 ◽  
Vol 28 (1) ◽  
pp. 343-351
Author(s):  
Norbert Kępczak ◽  
Radosław Rosik ◽  
Mariusz Urbaniak

Abstract The paper presents an impact of the addition of industrial machining chips on the mechanical properties of polymer concrete. As an additional filler, six types of industrial waste machining chips were used: steel fine chips, steel medium chips, steel thick chips, aluminium fine chips, aluminium medium chips, and titanium fine chips. During the research, the influence of the addition of chips on the basic parameters of mechanical properties, i.e., tensile strength, compressive strength, splitting tensile strength, and Young’s modulus, was analyzed. On the basis of the obtained results, conclusions were drawn that the addition of chips from machining causes a decrease in the value of the mechanical properties parameters of the polymer concrete even by 30%. The mechanism of cracking of samples, which were subjected to durability tests, was also explored. In addition, it was found that some chip waste can be used as a substitute for natural fillers during preparation of a mineral cast composition without losing much of the strength parameters.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 953
Author(s):  
Michał Łach ◽  
Reda A. Gado ◽  
Joanna Marczyk ◽  
Celina Ziejewska ◽  
Neslihan Doğan-Sağlamtimur ◽  
...  

Alkali activated cement (AAC) can be manufactured from industrial by-products to achieve goals of “zero-waste” production. We discuss in detail the AAC production process from (waste) post-production clay, which serves as the calcium-rich material. The effect of different parameters on the changes in properties of the final product, including morphology, phase formation, compressive strength, resistance to the high temperature, and long-term curing is presented. The drying and grinding of clay are required, even if both processes are energy-intensive; the reduction of particle size and the increase of specific surface area is crucial. Furthermore, calcination at 750 °C ensure approximately 20% higher compressive strength of final AAC in comparison to calcination performed at 700 °C. It resulted from the different ratio of phases: Calcite, mullite, quartz, gehlenite, and wollastonite in the final AAC. The type of activators (NaOH, NaOH:KOH mixtures, KOH) affected AAC mechanical properties, significantly. Sodium activators enabled obtaining higher values of strength. However, if KOH is required, the supplementation of initial materials with fly ash or metakaolin could improve the mechanical properties and durability of AAC, even c.a. 28%. The presented results confirm the possibility of recycling post-production clay from the Raciszyn II Jurassic limestone deposit.


Sign in / Sign up

Export Citation Format

Share Document