Characterization of Plasmonic Silicon Solar Cells Using Indium Nanoparticles/TiO2 Space Layer Structure

2013 ◽  
Vol 684 ◽  
pp. 16-20
Author(s):  
Wen Jeng Ho ◽  
Yi Yu Lee ◽  
Yuan Tsz Chen

We demonstrate experimentally the enhanced performance of the plasmonic silicon solar cell by using a nano-sized indium-particles and different thickness of TiO2 space layer structure. The optical reflectance, dark and photo current-voltage, and external quantum efficiency are measured and compared at each stages of processing. The conversion efficiencies enhancing of 17.78%, 27.5% and of 47.85% are obtained as the solar cell with indium nanoparticles on a 10-nm, a 30-nm and a 59.5-nm thick TiO2 space layer, respectively, compared to the solar cell without coated a TiO2 layer. Furthermore, the plasmonics conversion efficiency depend on the thickness of space layer are also demonstrated that the increasing by 15.46%, 12.1% and 6.08% for the solar cells with a 10-nm, 30-nm and 59.5-nm thick TiO2 space layer, respectively, were obtained.

2016 ◽  
Vol 18 (3) ◽  
pp. 1992-1997 ◽  
Author(s):  
Zhe Kang ◽  
Xinyu Tan ◽  
Xiao Li ◽  
Ting Xiao ◽  
Li Zhang ◽  
...  

A hybrid Schottky junction and solid state photoelectrochemical graphene-on-silicon solar cell is designed and evaluated, and it shows impressive power conversion efficiencies of >10%.


Author(s):  
ANUBHAV GUPTA ◽  
PRAVEEN S ◽  
ABHISHEK KUMAR ◽  
PRIYANKA SHREE ◽  
SUCHANA MISHRA

Organic solar cells using P3HT: PCBM as an active layer on ITO coated glass substrates were fabricated and characterized. Different air annealing procedures and cathode materials were tried and the characteristics were compared with that of a standard thin film polycrystalline silicon solar cell. It was found that the sample prepared with post-deposition air annealing at 130 oC improves the open circuit voltage (Voc) considerably. Besides, short circuit current (Isc) and the efficiency (η) were highest for the sample with a non annealed active layer. Series resistance (Rs) for this sample was lowest, but 103 times higher than that of the silicon solar cell, which in turn may have reduced the efficiency value for the organic cell compared to silicon.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4119
Author(s):  
Wen-Jeng Ho ◽  
Wei-Chen Lin ◽  
Jheng-Jie Liu ◽  
Hong-Jhang Syu ◽  
Ching-Fuh Lin

This paper experimentally demonstrates the benefits of combining an up-conversion (UC) layer containing Yb/Er-doped yttrium oxide-based phosphors with a plasmonic scattering layer containing indium nanoparticles (In-NPs) in enhancing the photovoltaic performance of textured silicon solar cells. The optical emissions of the Yb/Er-doped phosphors were characterized using photoluminescence measurements obtained at room temperature. Optical microscope images and photo current-voltage curves were used to characterize the UC emissions of Yb/Er-doped phosphors under illumination from a laser diode with a wavelength of 1550 nm. The plasmonic effects of In NPs were assessed in terms of absorbance and Raman scattering. The performance of the textured solar cells was evaluated in terms of optical reflectance, external quantum efficiency, and photovoltaic performance. The analysis was performed on cells with and without a UC layer containing Yb/Er-doped yttrium oxide-based phosphors of various concentrations. The analysis was also performed on cells with a UC layer in conjunction with a plasmonic scattering layer. The absolute conversion efficiency of the textured silicon solar cell with a combination of up-conversion and plasmonic-scattering layers (15.43%) exceeded that of the cell with an up-conversion layer only (14.94%) and that of the reference cell (14.45%).


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 791 ◽  
Author(s):  
Mahmoud H. Elshorbagy ◽  
Braulio García-Cámara ◽  
Eduardo López-Fraguas ◽  
Ricardo Vergaz

Solar energy is now dealing with the challenge of overcoming the Shockley–Queisser limit of single bandgap solar cells. Multilayer solar cells are a promising solution as the so-called third generation of solar cells. The combination of materials with different bandgap energies in multijunction cells enables power conversion efficiencies up to 30% at reasonable costs. However, interfaces between different layers are critical due to optical losses. In this work, we propose a hybrid metasurface in a monolithic perovskite-silicon solar cell. The design takes advantage of light management to optimize the absorption in the perovskite, as well as an efficient light guiding towards the silicon subcell. Furthermore, we have also included the effect of a textured back contact. The optimum proposal provides an enhancement of the matched short-circuit current density of a 20.5% respect to the used planar reference.


2016 ◽  
Vol 864 ◽  
pp. 154-158
Author(s):  
Mariya Al Qibtiya ◽  
Eka Cahya Prima ◽  
Brian Yuliarto ◽  
Suyatman

Natural dyes extracted from black rice are used as sensitizer for dye sensitized solar cell. The anthocyanin extracted with various pH in acidic and neutral coditions. Preparation of fotolectrode TiO2 film using doctor blade method and resulting average grain size 33,9 nm using X-Ray Diffractometer. Characterization of morphology and cross-section film TiO2 is confirmed by Scanning Electron microscopy (SEM). Optical absorption using UV-Visible Spectroscopy to obtain spectrum absorbance of anthocyanin in various pH. The current-voltage (J-V) characterization shows the performance DSSC have a match relation to the optical absorption. The best absorption of anthocyanin obtained at pH 6 as well as conversion efficiency reaches 2.26% at this pH condition.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 50988-50992 ◽  
Author(s):  
Tao Yuan ◽  
Dong Yang ◽  
Xiaoguang Zhu ◽  
Lingyu Zhou ◽  
Jian Zhang ◽  
...  

The power conversion efficiency of a PTB7:PC71BM polymer solar cell was improved up to 9.1% by a combination of methanol treatment followed by conjugation of a water- or alcohol-soluble polyelectrolyte thin layer.


Author(s):  
Karim Salim ◽  
◽  
M.N Amroun ◽  
K Sahraoui ◽  
W Azzoui ◽  
...  

Increasing the efficiency of solar cells relies on the surface of the solar cell. In this work, we simulated a textured silicon solar cell. This simulation allowed us to predict the values of the surface parameters such as the angle and depth between the pyramids for an optimal photovoltaic conversion where we found the Icc: 1.783 (A) and Vco: 0.551 (V) with a cell efficiency of about 13.56%. On the other hand, we performed another simulation of a non-textured solar cell to compare our values and found Icc: 1.623 (A) and Vco: 0.556 (V) with an efficiency of about 12.76%.


2006 ◽  
Vol 45 (5A) ◽  
pp. 3933-3937 ◽  
Author(s):  
Satoshi Omae ◽  
Takashi Minemoto ◽  
Mikio Murozono ◽  
Hideyuki Takakura ◽  
Yoshihiro Hamakawa

2012 ◽  
Vol 195 ◽  
pp. 301-304 ◽  
Author(s):  
Heike Angermann ◽  
U. Stürzebecher ◽  
J. Kegel ◽  
C. Gottschalk ◽  
K. Wolke ◽  
...  

For further enhancement of solar energy conversion efficiency the passivation of silicon (Si) substrate surfaces and interfaces of Si-based solar cell devices is a decisive precondition to reduce recombination losses of photogenerated charge carriers. These losses are mainly controlled by surface charges, the density and the character of rechargeable interface states (Dit) [], which are induced by defects localised in a small interlayer extending over only few Å. Therefore, the application of fast non-destructive methods for characterization of the electronic interface properties directly during the technological process has received an increasing interest in recent years.


2011 ◽  
Vol 1327 ◽  
Author(s):  
Dong Won Kang ◽  
Jong Seok Woo ◽  
Sung Hwan Choi ◽  
Seung Yoon Lee ◽  
Heon Min. Lee ◽  
...  

ABSTRACTWe have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.


Sign in / Sign up

Export Citation Format

Share Document