Synthesis and Characterization of Polyaniline/Montmorillonite/La3+ Nanocomposites

2009 ◽  
Vol 79-82 ◽  
pp. 1547-1550
Author(s):  
Ying Bing Wu ◽  
Zun Li Mo ◽  
Hong Chen ◽  
Gui Ping Niu

A new nanocomposite consisting of polyaniline (PANI), montmorillonite (MMT) and La3+ was developed via in-situ polymerization of aniline in the presence of MMT and La3+ through emulsion polymerization, and also a novel network structure consisting of nanowires had been shaped. The morphology and the chemical structure of the product were studied by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thermal property was exmined by mean of gravimetric analysis (TGA). The results indicated that PANI/MMT/ La3+ namocomposite has formed nanowires with diameter about 5 nm. The novel network structure consisting of nanowires has been shaped and overlapped towards certain direction. The formation of this network structure reveals that PANI molecules have been successfully inserted into the interlayer of MMT. Meanwhile, this conductivity network is believed to lead to the great improvement of the electrical conductivity for the nanocomposites. The FT-IR spectra reveal that PANI is obtained via in situ polymerization of the aniline monomer and there is a strong interaction between PANI and MMT. From XRD analysis, it can be also seen that the PANI molecules had been successfully intercalated into the galleries of the MMT. Moreover, the arrangement of PANI is more ordered in PANI/MMT/La3+ nanocomposite than that of pure PANI. From TGA curves, it is apparent that the introduction of MMT and rare-earth ions (La3+) exhibited a beneficial effect on the thermal stability of pure PANI. This markedly enhanced thermal stability of the nanocomposites can be ascribed to the MMT nanolayers acting as barriers for the degradation of PANI in the interlayer spacings and the inorganic nanoparticles trammeled the movement of the PANI molecule chains. They make the thermal decomposition of the nanocomposites at a disadvantage. As a consequence, the needed energy of the thermal decomposition increased, the thermal stability of nanocomposite increased. The paper offers a novel PANI/MMT/La3+ nanowire composites.

2012 ◽  
Vol 557-559 ◽  
pp. 417-420
Author(s):  
Hui Huang ◽  
Ju Kang Li ◽  
Zhong Cheng Guo

Conductive polyaniline/boron carbide (PANI/B4C) composites have been synthesized by in-situ polymerization of aniline in the presence of B4C particles. The structure and thermal stability of obtained composites were characterized by FTIR, XRD and TGA. The results showed that PANI and B4C particles were not simply blended, and a strong interaction existed at the interface of B4C and PANI. In the PANI/B4C composite, the degree crystalline of PANI increased and diffraction pattern of B4C was all but of amorphous. And that the composites were more thermally stable than that of the pure PANI. Electrical conductivity measurements indicated that the conductivity of PANI/B4C composites was much higher than that of the pure PANI and the maximum conductivity obtained was 35.6 S•cm-1 at 20 wt% of B4C.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yong Xie ◽  
Shi-Hao Zhang ◽  
Hai-Yun Jiang ◽  
Hui Zeng ◽  
Ruo-Mei Wu ◽  
...  

AbstractA new conductive composite composed of nanoscale carbon black (CB) and poly(3,4-ethylenedioxythiophene) (PEDOT) was prepared by a simple in-situ polymerization. The morphology of the composite was characterized by scanning electron microscopy and transmission electron microscopy. The structure and thermal stability were examined by Fourier transform infrared spectroscopy and thermal gravimetric analysis, respectively. The results indicated that the addition of CB improved the agglomerated state of PEDOT. On the one hand, CB effectively hindered the agglomeration of PEDOT during the polymerization. Thus, the obtained CB-PEDOT composite dispersed well in solution, which can facilitate the reprocessing of CB-PEDOT. On the other hand, CB covered most of the surface of PEDOT, which enhanced the electrical conductivity of CB-PEDOT. Furthermore, the interfacial interaction between CB and PEDOT improved the thermal stability of CB-PEDOT. The findings of this research suggest that CB can replace polyelectrolyte poly(styrenesulfonic acid) (PSS) to achieve reprocessable materials for certain applications.


2012 ◽  
Vol 502 ◽  
pp. 31-35 ◽  
Author(s):  
Xiao Hua Wang

Polyaniline(PANI) with the doping of hydrochloride(HC1), aminosulfonic acid (NH2SO3H) or dodecylbenzenesulfonic acid(DBSA) was prepared by in-situ polymerization. Effects of acid content, reaction time, oxidant ammonium persulfate (APS) dosage and reaction temperature on the conductivity of PANI were studied. The resistance and thermal stability of them were compared. Results show that the largest conductivity of HC1-PANI is 1.98 s.cm-1 among them in case the C(HC1)=0.5mol/L, reaction time is 6.0h, n(APS/aniline)=1.0; The conductivity of NH2SO3H-PANI is 0.2s.cm-1 in case the C(NH2SO3H)=1.0mol/L, reaction time is 6.0h, n(APS/aniline)=2.0; The conductivity of DBSA-PANI is 0.98s.cm-1 in case the C(DBSA)=1.0 mol/L, reaction time is 8.0h, n(APS/aniline) = 2.0. The the least resistance of HC1-PANI is 10Ω, and that of NH2SO3H- PANI is the largest of 120Ω. The order of their thermal stability is DBSA-PANI > NH2SO3H-PANI > HC1-PANI before 350°C, that of their thermal stability is inverse when it reaches 350°C.


2019 ◽  
Vol 14 ◽  
pp. 155892501982744 ◽  
Author(s):  
Juan Xie ◽  
Wei Pan ◽  
Zheng Guo ◽  
Shan Shan Jiao ◽  
Ling Ping Yang

Polypyrrole/cotton composites have substantial application potential in flexible heating devices due to their flexibility, high conductivity, and thermal stability. In this context, a series of flexible polypyrrole/cotton fabrics were intrinsically prepared using in situ polymerization process with the different Py/FeCl3 concentration ratios. To investigate their structural and morphological properties, thermal stability, tensile strength, conductivity, and heat-generating property, the composite fabrics were subjected to Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermo-gravimetric analysis, mechanical properties, and resistivity measurements. The results showed that polypyrrole/cotton fabrics exhibited a low resistivity of 0.37 Ω cm. Temperature–time curve showed that temperature of the polypyrrole/cotton fabrics increased very quickly from room temperature to a steady-state maximum temperature of 168.3°C within 3 min at applied voltage of 5 V. Tensile strength of polypyrrole/cotton composites reached to 58 MPa, which far surpassed raw cotton fabrics. Therefore, polypyrrole/cotton fabrics have exhibited high electrical, thermal properties, and mechanical strength, which can be utilized as an ideal flexible heating element.


2011 ◽  
Vol 233-235 ◽  
pp. 1830-1833 ◽  
Author(s):  
Yong Chen ◽  
Hui Xu ◽  
Tao Sun

The PMMA/TiO2 nanocomposites were prepared by in situ polymerization,the dissolution, thermal stability and the mechanical property of the nanocomposites were studied. The results indicated that nano-TiO2 may be crosslinking points in the matrix and the thermal stability of the nanocomposites became higher. As the content of nano-TiO2 increased, the mechanical properties of the nanocomposites had great changes.


2014 ◽  
Vol 904 ◽  
pp. 7-9
Author(s):  
Xiao Hua Gu ◽  
Xi Wei Zhang ◽  
Bao Yun Xu ◽  
Peng Zeng

In this paper, the diphenyl methane diisocyanate (MDI) was used to modify montmorillonoid (MMT) and got the organic montmorillonite (OMMT), which was used with the monomers of PET by in situ polymerization method to prepare PET/MMT nanocomposition. The OMMT was analyzed by the X ray diffraction (XRD) to test the change of the spacing layer. Dispersion of MMT in the PET/MMT nanocomposites were studied with XRD and SEM and by means of thermogravimetric analyzer (TGA) on the thermal stability of PET/MMT nanocomposites. The results showed that, MDI modified MMT successfully, and the compatibility of MMT and PET was increased .


2020 ◽  
Vol 20 (7) ◽  
pp. 4193-4197
Author(s):  
Seong Deok Seo ◽  
Kyung Chan Kang ◽  
Ji Won Jeong ◽  
Seung Min Lee ◽  
Ju Dong Lee ◽  
...  

The PMMA (poly methyl methacrylate)/clay nanocomposite powders were synthesized by In-Situ suspension polymerizations using microwave heating. The PMMA/clay nanocomposites were also sampled using injection moulding to make specimens for material characterization. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated the formation of a highly intercalated clay layer in the nanocomposites. It was found that the microstructure of PMMA/clay nanocomposites was strongly dependent of content of clay. Thermo gravimetric analysis (TGA) indicated an improvement in the thermal stability of nanocomposites compared to that of the pure PMMA. Differential scanning calorimetry (DSC) showed that the nanocomposites had a higher glass transition (Tg) temperature than the PMMA. Fourier-transform infrared (FT-IR) spectroscopy indicated an interaction between the carbonyl group of PMMA and hydroxyl group of the clay. Therefore, a possible reason in enhanced material properties of nanocomposites is that the chemical interaction and nanostructure of PMMA polymer and intercalated inorganic silicate layer has increased the thermal stability of the PMMA/clay nanocomposites.


2010 ◽  
Vol 150-151 ◽  
pp. 386-390
Author(s):  
Yuan Xun Li ◽  
Ying Li Liu ◽  
Huai Wu Zhang ◽  
Wei Wei Ling

The rod-shaped polyaniline (PANI)-barium ferrite nanocomposites were synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The composites obtained were characterized by infrared spectra (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and the composition of the composites were investigated by TG-DTG analysis. The results indicate that the thermal stability of the composites is higher than that of the pure PANI which can be attributed to the interactions existed between PANI chains and ferrite particles.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 596
Author(s):  
He-xin Zhang ◽  
Byeong-Gwang Shin ◽  
Dong-Eun Lee ◽  
Keun-Byoung Yoon

Polypropylene/molybdenum disulfied (PP/MoS2) and Polypropylene/hexagonal boron nitride (PP/hBN) nanocomposites with varying concentration (0–6 wt %) were fabricated via in situ polymerization using two-dimensional (2D)-nanosheet/MgCl2-supported Ti-based Ziegler–Natta catalysts, which was prepared through a novel coagglomeration method. For catalyst preparation and interfacial interaction, MoS2 and hBN were modified with octadecylamine (ODA) and octyltriethoxysilane (OTES), respectively. Compared with those of pristine PP, thermal stability of composites was 70 °C higher and also tensile strength and Young’s modulus of the composites were up to 35% and 60% higher (even at small filler contents), respectively. The alkyl-modified 2D nanofillers were characterized by strong interfacial interactions between the nanofiller and the polymer matrix. The coagglomeration method employed in this work allows easy introduction and content manipulation of various 2D-nanosheets for the preparation of 2D-nanosheet/MgCl2-supported Ti-based Ziegler–Natta catalysts.


2019 ◽  
Vol 26 (1) ◽  
pp. 347-359 ◽  
Author(s):  
Huda AlFannakh ◽  
S. S. Arafat ◽  
S. S. Ibrahim

AbstractPolyaniline-poly vinyl alcohol (PANI-PVA) conducting blends containing 15 wt% aniline were synthesized by in situ polymerization of aniline. Three-phase polymer blended nanocomposites with different contents of magnetite (5, 10 and 15 wt.%) were also synthesized. We measured the current-voltage (I-V) curves for the conducting blend and its magnetite nanocomposite. We also measured their thermal stability, and performed kinetic analysis through thermogravimetric analysis. We observed that the three phase nanocomposites showed enhanced electrical conductivity compared with that of the conductive blend, and no electrical hysteresis. The PVA/PANi blend was more stable above 350∘C and the addition of Fe3O4 enhanced the thermal stability of the conductive blend. The apparent activation energy of the three phase nanocomposites was greater than those of both the pure PVA and PVA/PANi samples. These results suggest that such three phase nanocomposites could be used in a range of applications.


Sign in / Sign up

Export Citation Format

Share Document