The Rubber Elasticity of Poly(N-isopropylacrylamide) Hydrogel Networks

2013 ◽  
Vol 812 ◽  
pp. 210-215
Author(s):  
Nadia Adrus ◽  
Mathias Ulbricht

We report here on the characterization of classical bulk poly (N-isopropylacrylamide) (PNIPAAm) hydrogel networks. The classical PNIPAAm hydrogels were prepared from N-isopropylacrylamide (NIPAAm) as a main monomer and N,N-methylenebisacrylamide (MBAAm) as a crosslinker. The viscoelastic character of bulk hydrogels was examined using rheological measurements under frequency sweep mode (20 °C). A range of frequency, ω from 0.1 to 100 rad/s, was employed as this is a typical range for rubber plateau. Within this range, almost frequency independent of storage moduli (G'; ~ 104 Pa as a function of hydrogel compositions were obtained. Indeed, the perfect soft-rubbery behaviour of PNIPAAm hydrogels could be confirmed and thus enabled the estimation of mesh size. Interestingly, the mesh size rubbery hydrogels determined from rheological data was in a good agreement to that from swelling experiments (~ 4 to 9 nm).

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1206
Author(s):  
Xukai Ding ◽  
Han Zhang ◽  
Libin Huang ◽  
Liye Zhao ◽  
Hongsheng Li

This paper presents the characterization of the modal frequencies and the modal orientation of the axisymmetric resonators in Coriolis vibratory gyroscopes based on the approaches of the frequency sweep and the ring down. The modal frequencies and the orientation of the stiffness axis are the key parameters for the mechanical correction of the stiffness imperfections. The frequency sweep method utilizes the zero and the poles in the magnitude-frequency responses of the two-dimensional transfer function to extract the modal orientation information within the frequency domain. The ring down method makes use of the peak and the valley values of the beat signals at the readout electrodes to obtain the modal orientation and the coefficient of the nonlinear stiffness directly within the time domain. The proposed approaches were verified via a silicon ring resonator designed for gyroscopic sensing and the modal information from the experiments exhibited a good agreement between the methods of the frequency sweep and the ring down.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1259
Author(s):  
Dmitry Kozlov ◽  
Irina Munina ◽  
Pavel Turalchuk ◽  
Vitalii Kirillov ◽  
Alexey Shitvov ◽  
...  

A new implementation of a beam-steering transmitarray is proposed based on the tiled array architecture. Each pixel of the transmitarray is manufactured as a standalone unit which can be hard-wired for specific transmission characteristics. A set of complementary units, providing reciprocal phase-shifts, can be assembled in a prescribed spatial phase-modulation pattern to perform beam steering and beam forming in a broad spatial range. A compact circuit model of the tiled unit cell is proposed and characterized with full-wave electromagnetic simulations. Waveguide measurements of a prototype unit cell have been carried out. A design example of a tiled 10 × 10-element 1-bit beam-steering transmitarray is presented and its performance benchmarked against the conventional single-panel, i.e., unibody, counterpart. Prototypes of the tiled and single-panel C-band transmitarrays have been fabricated and tested, demonstrating their close performance, good agreement with simulations and a weak effect of fabrication tolerances. The proposed transmitarray antenna configuration has great potential for fifth-generation (5G) communication systems.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe3392
Author(s):  
Erin G. Teich ◽  
K. Lawrence Galloway ◽  
Paulo E. Arratia ◽  
Danielle S. Bassett

The nature of yield in amorphous materials under stress has yet to be fully elucidated. In particular, understanding how microscopic rearrangement gives rise to macroscopic structural and rheological signatures in disordered systems is vital for the prediction and characterization of yield and the study of how memory is stored in disordered materials. Here, we investigate the evolution of local structural homogeneity on an individual particle level in amorphous jammed two-dimensional (athermal) systems under oscillatory shear and relate this evolution to rearrangement, memory, and macroscale rheological measurements. We define the structural metric crystalline shielding, and show that it is predictive of rearrangement propensity and structural volatility of individual particles under shear. We use this metric to identify localized regions of the system in which the material’s memory of its preparation is preserved. Our results contribute to a growing understanding of how local structure relates to dynamic response and memory in disordered systems.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


2011 ◽  
Vol 24 (6) ◽  
pp. 777-788 ◽  
Author(s):  
J.Z. Liang

The structure of the interlayer between matrix and inclusions affect directly the mechanical and physical properties of inorganic particulate-filled polymer composites. The interlayer thickness is an important parameter for characterization of the interfacial structure. The effects of the interlayer between the filler particles and matrix on the mechanical properties of polymer composites were analyzed in this article. On the basis of a simplified model of interlayer, an expression for estimating the interlayer thickness ([Formula: see text]) was proposed. In addition, the relationship between the [Formula: see text] and the particle size and its concentration was discussed. The results showed that the calculations of the [Formula: see text] and thickness/particle diameter ratio ([Formula: see text]) increased nonlinearly with an increase of the volume fraction of the inclusions. Moreover, the predictions of [Formula: see text] and the relevant data reported in literature were compared, and good agreement was found between them.


2008 ◽  
Vol 52 (10) ◽  
pp. 3589-3596 ◽  
Author(s):  
Carlos Juan ◽  
Alejandro Beceiro ◽  
Olivia Gutiérrez ◽  
Sebastián Albertí ◽  
Margalida Garau ◽  
...  

ABSTRACT During a survey conducted to evaluate the incidence of class B carbapenemase (metallo-β-lactamase [MBL])-producing Pseudomonas aeruginosa strains from hospitals in Majorca, Spain, five clinical isolates showed a positive Etest MBL screening test result. In one of them, strain PA-SL2, the presence of a new bla VIM derivative (bla VIM-13) was detected by PCR amplification with bla VIM-1-specific primers followed by sequencing. The bla VIM-13-producing isolate showed resistance to all β-lactams (except aztreonam), gentamicin, tobramycin, and ciprofloxacin. VIM-13 exhibited 93% and 88% amino acid sequence identities with VIM-1 and VIM-2, respectively. bla VIM-13 was cloned in parallel with bla VIM-1, and the resistance profile conferred was analyzed both in Escherichia coli and in P. aeruginosa backgrounds. Compared to VIM-1, VIM-13 conferred slightly higher levels of resistance to piperacillin and lower levels of resistance to ceftazidime and cefepime. VIM-13 and VIM-1 were purified in parallel as well, and their kinetic parameters were compared. The k cat/K m ratios for the antibiotics mentioned above were in good agreement with the MIC data. Furthermore, EDTA inhibited the activity of VIM-13 approximately 25 times less than it inhibited the activity of VIM-1. VIM-13 was harbored in a class 1 integron, along with a new variant (Ala108Thr) of the aminoglycoside-modifying enzyme encoding gene aacA4, which confers resistance to gentamicin and tobramycin. Finally, the VIM-13 integron was apparently located in the chromosome, since transformation and conjugation experiments consistently yielded negative results and the bla VIM-13 probe hybridized only with the genomic DNA.


2019 ◽  
Vol 33 (11) ◽  
pp. 1950093 ◽  
Author(s):  
A. M. A. EL-Barry ◽  
D. M. Habashy

For reinforcement, the photochromic field and the cooperation between the theoretical and experimental branches of physics, the computational, theoretical artificial neural networks (CTANNs) and the resilient back propagation (R[Formula: see text]) training algorithm were used to model optical characterizations of casting (Admantan-Fulgide) thin films with different concentrations. The simulated values of ANN are in good agreement with the experimental data. The model was also used to predict values, which were not included in the training. The high precision of the model has been constructed. Moreover, the concentration dependence of both the energy gaps and Urbach’s tail were, also tested. The capability of the technique to simulate the experimental information with best accuracy and the foretelling of some concentrations which is not involved in the experimental data recommends it to dominate the modeling technique in casting (Admantan-Fulgide) thin films.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Maryam Haghighi ◽  
Karamatollah Rezaei

Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details.


Author(s):  
Mikhail A. Sokolov

Mini-CT specimens are becoming a highly popular geometry for use in reactor pressure vessel (RPV) community for direct measurement of fracture toughness in the transition region using the Master Curve methodology. In the present study, Mini-CT specimens were machined from previously tested Charpy specimens of the Midland low upper-shelf Linde 80 weld in both, unirradiated and irradiated conditions. The irradiated specimens have been characterized as part of a joint ORNL-EPRI-CRIEPI collaborative program. The Linde 80 weld was selected because it has been extensively characterized in the irradiated condition by conventional specimens, and because of the need to validate application of Mini-CT specimens for low upper-shelf materials — a more likely case for some irradiated materials of older generation RPVs. It is shown that the fracture toughness reference temperatures, To, derived from these Mini-CT specimens are in good agreement with To values previously recorded for this material in the unirradiated and irradiated conditions. However, this study indicates that in real practice it is highly advisable to use a much larger number of specimens than the minimum number prescribed in ASTM E1921.


Sign in / Sign up

Export Citation Format

Share Document