Investigate the Characteristics of 0.65(K0.5Bi0.5TiO3)-0.35BaTiO3 Films at Various Deposition Temperatures

2013 ◽  
Vol 813 ◽  
pp. 372-376
Author(s):  
W.C. Tzou ◽  
C.G. Kuo ◽  
P.S. Cheng ◽  
Y.H. Lin ◽  
Cheng Fu Yang

0.65(K0.5Bi0.5)TiO30.35BaTiO3 (KBT-BT3) ceramics were synthesized using a two-step calcination process that combined hydrothermal and conventional calcination processes. After sintered into ceramic target, KBT-BT3 films were deposited on Pt/Ti/Si and SiO2/Si/Al substrates by radio frequency magnetron (RF) sputtering at various temperatures. The surface morphologies and thicknesses of KBT-BT3 films were characterized by field emission scanning electron microscopy, and the thickness increased with increasing deposition temperature. XRD patterns showed that all KBT-BT3 films were amorphous and higher deposition temperature had no apparent effects to improve the crystalline orientation. The effects of deposition temperatures on the properties of the current-electric filed, polarization-applied electric field, and capacitance-voltage curves were also investigated. As deposition temperatures of KBT-BT3 films increased from room temperature to 400°C, the leakage current density had no apparent variation but the threshold voltage was shifted to lower value. The theorems for the effects of deposition temperature on the properties of KBT-BT3 films were also investigated.

2010 ◽  
Vol 25 (9) ◽  
pp. 1842-1846 ◽  
Author(s):  
Qi-Feng Han ◽  
Cheng-Hong Duan ◽  
Guo-Ping Du ◽  
Wang-Zhou Shi

AlxIn1–xN films were grown on (0001) sapphire substrates by reactive radiofrequency (RF) magnetron sputtering in an ambient of Ar and N2. The XRD patterns are shown from AlxIn1–xN films grown on AlN/sapphire substrates using a wide range of magnetron power ratio settings. The wurtzite structure films have high crystal quality with full-width at half-maximum (FWHM) in the range of 0.22°–0.52°. The surface morphologies were observed by scanning electron microscopy (SEM). Raman spectra were measured on the AlxIn1–xN surfaces in a backscattering configuration at room temperature with 532 nm laser excitation and show A1(LO) bimodal behavior. Electrical resistivity and electron mobility were measured by the Hall effect method in the conventional Van der Pauw geometry at room temperature. The lowest electrical resistivity is 1 × 10−3 Ω·cm. This work suggests that reactive magnetron sputtering is a promising method for growing AlxIn1–xN films in over a large composition range.


2021 ◽  
pp. 2141003
Author(s):  
Wenli Zeng ◽  
Yen-Lin Chiu ◽  
Fang-Hsing Wang ◽  
Hsien-Wei Tseng ◽  
Cheng-Fu Yang

ZnO + 1.5 wt.% TiO2 powder is calcined at [Formula: see text] and sintered at [Formula: see text] to prepare the Ti-doped ZnO ceramic target, and RF sputtering is used to deposit F and Ti co-doped ZnO (FTZO) films by introducing Ar + CF4 mixing gas (CF4 flow rate is 0.2%) into the deposition chamber. The deposition temperature is changed from room temperature to [Formula: see text], and the thicknesses of all deposited FTZO films are controlled at about 320 nm. After FTZO films are deposited, X-ray diffraction pattern is used to analyze their crystalline properties, field-effect scanning electron microscope is used to observe their surface morphologies and confirm their thicknesses. n&k analyzer is used to measure the transmittance spectra in the wavelength range of 300–1100 nm and we find that the absorption edge of FTZO films is shifted to lower wavelength as the deposition temperature increases. The optical energy band gap of FTZO films is calculated using the transmittance spectra and the electrical properties of FTZO films are measured using a Hall equipment. Finally, secondary-ion mass spectrometry is used to analyze the C, O, F, Si and Ti elements with different deposition temperatures for confirming the existence and distribution of [Formula: see text] ions and non-existence of C element.


2002 ◽  
Vol 719 ◽  
Author(s):  
Galina Khlyap

AbstractRoom-temperature electric investigations carried out in CO2-laser irradiated ZnCdHgTe epifilms revealed current-voltage and capacitance-voltage dependencies typical for the metal-semiconductor barrier structure. The epilayer surface studies had demonstrated that the cell-like relief has replaced the initial tessellated structure observed on the as-grown samples. The detailed numerical analysis of the experimental measurements and morphological investigations of the film surface showed that the boundaries of the cells formed under the laser irradiation are appeared as the regions of accumulation of derived charged defects of different type of conductivity supplying free charge carriers under the applied electric field.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Vladimir V. Zyryanov ◽  
Nikolay F. Uvarov ◽  
Artem S. Ulihin ◽  
Vladislav A. Sadykov

AbstractSSZ-based ceramics were obtained by sintering of nanopowders derived at room temperature by mechanochemical synthesis from refined technical grade ZrO2 nano-precursors. RT-treatment by 2.5 MeV electrons up to 1563 K was used for the modification of ceramics. Powders and ceramics were characterized by XRD, Raman, SEM and EDS, TEM, SIMS techniques. The phase composition of Zr0.89Sc0.1Ce0.01O1.95 ceramics was very close to cubic structure but better fitting of XRD patterns was obtained for rhombohedral lattice. Conductivity of solid electrolytes for IT SOFC was studied by complex impedance method. To stabilize cubic structure and increase conductivity at operation temperature of To ∼ 1000 K, the composition of SSZ solid electrolyte was optimized by addition of yttria and sintering aids. The interaction of admixtures with minor dopants leading to intergrain phase was revealed. During fast sintering, ceramics keep a memory about inhomogeneous disordered solid solutions in a form of nanostructuring. Conductivity data indicate nanostructuring of ceramics too: activation energies of bulk and grain boundary conductivities are close (Eb ∼ 0.9 eV, Egb ∼ 1.05 eV). Annealing of ceramics at high temperatures increases conductivity at To and promotes grain growth.


2006 ◽  
Vol 306-308 ◽  
pp. 1313-1318
Author(s):  
J.S. Kim ◽  
B.H. Park ◽  
T.J. Choi ◽  
Se Hyun Shin ◽  
Jae Chul Lee ◽  
...  

Pb0.65Ba0.35ZrO3 (PBZ) thin films have been grown on MgO (001) substrates by pulsed-laser deposition (PLD). We have compared the structural and dielectric properties of PBZ films grown at various temperatures. A highly c-axis orientation has appeared at PBZ film grown at the deposition temperature of 550oC. The c-axis oriented PBZ film has also shown the largest tunability among all the PBZ films in capacitance-voltage measurements. The tunability and dielectric loss of the PBZ film was 20% and 0.00959, respectively. In addition, we have compared the temperature coefficient of capacitance (TCC) of a PBZ film with that of a Ba0.5Sr0.5TiO3 (BST) film which is a well-known material applicable to tunable microwave devices. We have confirmed that TCC value of a PBZ thin film was three-times smaller than that of a BST thin film.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350006
Author(s):  
AHMED E. HANNORA ◽  
FARIED F. HANNA ◽  
LOTFY K. MAREI

Mechanical alloying (MA) method has been used to produce nanocrystallite Mn -15at.% Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α- Mn and aluminum powder samples show a mixture of α + β- MnAl phases after 20 h of milling and changes to a dominant β- MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall–Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are ~ 2.1 emu/g and ~ 92 Oe, respectively.


2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


2006 ◽  
Vol 957 ◽  
Author(s):  
Luis Manuel Angelats ◽  
Maharaj S Tomar ◽  
Rahul Singhal ◽  
Oscar P Perez ◽  
Hector J Jimenez ◽  
...  

ABSTRACTZn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O targets were used to grow thin films by rf magnetron sputtering. XRD patterns of the films showed a strong preferred orientation along c-axis. Zn0.90Co0.10O film showed a transmittance above 75% in the visible range, while the transmittance of the Zn0.85[Co0.50Fe0.50]0.15O film was about 45%; with three absorption peaks attributed to d-d transitions of tetrahedrally coordinated Co2+. The band gap values for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films were 2.95 and 2.70 eV respectively, which are slightly less than ZnO bulk. The Zn0.90Co0.10O film showed a relatively large positive magnetoresistance (MR) at the high magnetic field in the temperature range from 7 to 50 K, which reached 11.9% a 7K for the magnetoresistance. The lowest MR was found at 100 K. From M-H curve measured at room temperature shown a probable antiferromagnetic behavior, although was possible to observe little coercive field of 30 Oe and 40 Oe for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films, respectively.


2020 ◽  
Vol 307 ◽  
pp. 339-344
Author(s):  
Ishak Qayyum Afiqah ◽  
Nik Aziz Nik Ali ◽  
Abd Majid Siti Nurhaziqah ◽  
Hasiah Salleh

Age of monstrous amount of underutilized marine processing byproducts has been perceived as waste and many effort were given to utilize these materials in various application. With an incredible number of study on these byproducts, some compound were identified and apply for human utilization. Hydroxyapatite (HAp) is the main inorganic calcium phosphate mineral with excellent osteoconductivity, good bioactivity and biocompatibility. The production of HAp powder from synthetic process involves many chemicals with complicated procedures. Due to this matter, the raw HAp powder was extracted from natural sources selayang fish bones. Extortion process started with boiling fish bones to eliminate adherent fish meats. After calcination process fish bone were dried in room temperature before crushed by using grinder to obtain the powder. Next, the powder undergo calcination process at 900°C for 5 hours. The characterization of raw HAp was done via X-ray Diffraction, Fourier Transform Infrared Spectometer, Scanning Electron Microscopy, and Thermogravimetric analysis.


2014 ◽  
Vol 1024 ◽  
pp. 120-123
Author(s):  
Nezar Gassem Elfadill ◽  
M. Roslan Hashim ◽  
Khaled M. Chahrour ◽  
Chun Sheng Wang

Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}Nanocrystalline cupric oxide (CuO) film was prepared by sputtering of pure copper metal on n-type single crystalline Si substrate under argon-oxygen ambient. Structural and morphological analyses of the as-deposited CuO films were performed by X-ray diffraction (XRD) diffractometer and Field Emission Scanning Electron Microscopy (FESEM). The results show Single crystalline granular nanocrystalline (002) CuO films, with 18 nm crystallite size. Current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed for p-CuO/n-Si hetrojunction. Diode parameters such as saturation current (Is=9.5E-6 A) and ideality factor (n=1.86) were extracted from the dark I-V characteristics. Potential barrier height of the junction (ϕi=1.1V) was revealed from (1/C2- V) plot. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}


Sign in / Sign up

Export Citation Format

Share Document