Experimental Study in Gangue Base-Course Mixture Materials for Pavement

2013 ◽  
Vol 860-863 ◽  
pp. 1270-1273 ◽  
Author(s):  
Fu Jun Wang ◽  
Jing Luo ◽  
Hui Rong Zhu

Coal gangue, acting as the solid skeleton of pavement base materials, can efficiently reduce the drying shrinkage. Additionally, similar to fly ash in mixture material, gangue can react with lime (so called pozzolanic reaction), resulting in the formation of pavement base with a certain strength, good water stability and frost resistance, are good overall at the grass-roots level. Many cities in our country has gradually tried to use different kinds of industrial waste residue instead of sand to prepare the pavement base materials. This way, not only the waste residue is recycled, the lack of sand aggregates in road construction can also be overcome, which facilitate technical and economic growths.

2013 ◽  
Vol 340 ◽  
pp. 80-84
Author(s):  
Deng Lin

Cement-stabilized macadam has good mechanical property, but also has the advantages of plate nature, water stability and frost resistance, and it is widely used in the pavement base or sub-base course of expressway. Based on the fundamental mechanical theory of the strength and the global stability of cement stabilization macadam, this article discusses how to design the grading of the cement stabilization macadam and the influencing factors, besides, it also presents the construction control methods of the cement stabilization macadam, which is of guiding significance to the design and construction of the cement stabilization macadam.


2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2021 ◽  
Vol 2021 ◽  
pp. 86-93
Author(s):  
Anatolii Mudrychenko ◽  
◽  
Andrii Hrinchuk ◽  
Ivan Balashov ◽  
Sergey Illyasch ◽  
...  

Introduction. Growing volumes of road construction increase the need to expand and rationally use of raw materials. The need for stone materials can be solved through the wide spread using of local materials, recycled products of industry in the pavement base courses and decreasing the use of natural construction materials by replacing them with alternatives, including soils, slag materials that are metallurgical industry wastes. Experience of ferrous metallurgy slag usage has been accumulated in the road industry of Ukraine. Their usage makes it possible to extend the construction season, increases the strength and reliability of road structures due to their physical and mechanical properties, significantly reduces the road pavement energy consumption, simplifying the technology of works and the estimated cost of road construction. It was determined that the layers of pavement made from blast furnace slag have a high bearing capacity. Slag structures in 5–10 years of hardening are not inferior to, and in 10–20 years surpass cement structures on durability and deformation resistance. However, there is an urgent need to provide strength and open road traffic on the already built road section in a shortest possible term, so there is a need to accelerate the activation of the slow-setting binder. Therefore water glass (water solution of sodium silicate) is used.Purpose. The purpose of the work is to study the feasibility of using the soils and recycled industry products treated with water glass in the road pavement base courses.Materials and methods. Experimental tests of soils and blast furnace slags treated with water glass with different content of water solution of sodium silicate were performed.Results. The feasibility of using the asphalt concrete mixtures on the basis of soils and recycled products of industry treated with water glass in the pavement base courses is determined. Recommendations regarding technological parameters of preparation, transportation, laying and compaction of such mixes are given.Conclusions. Performed studies have shown that the physical and mechanical parameters of soils and blast furnace slags treated with water glass meet the requirements of current regulations of Ukraine. The advantages of use are noted, namely: the possibility of replacement of traditional stone materials by the local materials and recycled products of industry, reducing the transport component in the cost of construction. The obtained results indicate the feasibility of using the soils and recycled products of industry treated with water glass in the road construction.Keywords: soils, recycled products of industry, graded blast furnace slag, water solution of sodium silicate, water glass


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sarath Chandra K ◽  
Krishnaiah S ◽  
Kibebe Sahile

Industrialization is the key to the growth of any country’s economy. However, on the other hand, the production of industrial waste is increasing enormously, which adversely impacts the environment and natural resources. Red mud is also a widespread industrial waste produced during aluminium extraction from bauxite ore in Bayer’s process. Red mud is a highly alkaline material that creates a massive environmental threat in nature. To reduce the impact of this solid waste material, the ideal method is to use it in construction works with appropriate stabilization. This study envisages the strength properties of red mud with fly ash and cement to use it as a road construction material in the subgrade. The influence of fly ash and cement on improving the strength properties of red mud was studied in detail by replacing red mud with 10%, 20%, and 30% with fly ash and 1%, 3%, and 5% of cement to its dry weight. The CBR (California bearing ratio) value was increased from 1.58% to 11.6% by stabilizing red mud with fly ash and cement, which can be used as a road construction material. The UCS (unconfined compressive strength) of red mud was increased from 825 kPa to 2340 kPa upon curing for 28 days with the right mix of fly ash and cement. Along with the strength properties, the chemical analysis of leachate for the best suitable mix was performed according to the TCLP method to understand the hazardous materials present in the red mud when it is injected as ground material. Both strength properties and the leachate characteristics prove that the red mud with suitable fly ash and cement is an excellent material in road constructions.


2021 ◽  
pp. 317-328
Author(s):  
R. J. Salunkhe ◽  
N. A. Shinde ◽  
A. H. Kalubarme ◽  
H. D. Aiwale ◽  
S. D. Patil

Author(s):  
Rui Xiao ◽  
Pawel Polaczyk ◽  
Miaomiao Zhang ◽  
Xi Jiang ◽  
Yiyuan Zhang ◽  
...  

As the concept of sustainable pavement gains prominence, a growing number of industrial wastes and recycled materials have been utilized in the pavement industry to preserve natural resources. This study investigates the potential use of waste glass powder-based geopolymer cement as a stabilizing agent in recycled waste glass aggregate (GA) bases. Two recycled materials, waste glass powder (GP) and class F fly ash (FF), were used as the raw materials in the preparation of geopolymer. Virgin aggregate (VA) was replaced by GA at varying replacement ratios as the pavement base materials, and the mechanical behaviors before and after geopolymer stabilization were evaluated. Without stabilization, the incorporation of over 10% GA caused significant detrimental effects on the California bearing ratios (CBR) of base materials, which should be carefully managed in pavement construction. However, all geopolymer stabilized samples showed decent strength properties, indicating the effectiveness of geopolymer stabilization. The use of GA reduced the drying shrinkage of base samples, although the mechanical properties were compromised. During the sample preparation, a higher curing temperature and relative humidity resulted in better mechanical behaviors, and the surface of GA could dissolve in alkaline solution and involve in the geopolymerization at 40°C. The microstructure and minerology of geopolymer stabilizer of base materials were characterized by scanning electron microscopy (SEM) and X-ray defraction (XRD) analyses. This study confirmed the promise of using waste glass-based pavement base materials as the greener substitutes and the potential synergy between waste glass recycling and the pavement industry.


2020 ◽  
Vol 12 (10) ◽  
pp. 4313 ◽  
Author(s):  
Md Mizanur Rahman ◽  
Simon Beecham ◽  
Asif Iqbal ◽  
Md Rajibul Karim ◽  
Abu Taher Zillur Rabbi

The mechanistic design of a concrete block pavement (CBP) can be very complicated and often requires the use of computer programs. This paper presents a new mechanistic-empirical method, which is implemented in a computer program (DesignPave) that calculates base course/sub-base thicknesses for a range of design inputs such as traffic load, interlocking properties, and material stiffness. A range of virgin and recycled unbound granular materials were also experimentally tested to characterize them for possible use as base course or sub-base materials. Combining the new mechanistic-empirical method and the range of base course/sub-base course materials (virgin and recycled aggregates), it was found that while a CBP containing recycled aggregates did not offer a significant direct financial benefit based on the characteristics or material costs, the associated environmental benefits were very high.


2012 ◽  
Vol 178-181 ◽  
pp. 1699-1705
Author(s):  
Fa Liang Lu ◽  
Jin Li

To test and inspect the chemical compositions and mechanical properties of the steel slag produced by the converters of Jigang Group co. ltd, and study the feasibility of using the steel slag as base course material. Prepare cement stabilized steel slag specimens with different contents of cement mixed for the unconfined compressive strength test. Determine through test its strength after 7 days and 28 days and its water stability after 7 days’ soaking. Prepare in the same method of two different kinds of cement and coal ash stabilized specimens with different contents of coal ash mixed for the unconfined compressive strength test, to test its strength and water stability. The comparison on mechanical property with cement stabilized macadam indicates that the cement stabilized steel slag and cement with coal ash stabilized steel slag both have favorable mechanical property and water stability and the steel slag produced by the converters of Jigang Group co. ltd can be popularized for use as base course material.


2012 ◽  
Vol 626 ◽  
pp. 34-38
Author(s):  
Ary Setyawan ◽  
Anastasia Muda ◽  
Sholihin As’ad

Road rehabilitation and reconstruction generate large supplies of reclaimed asphalt pavement (RAP). One of the efforts to reuse the RAP is by insitu process and utilize it as road base materials. To get satisfying result from the RAP, it is necessary to add a certain amount of Ordinary Portland Cement (OPC) as stabilizer. This study investigate the potential use of OPC-stabilized RAP in road bases. Laboratory experimental method was applied by using material collected from road located at Boyolali-Kartasura as the object of the study with the cement content variations of 4%, 5% and 6% for unconfined compressive strength test (UCS) and the cement contents variation of 5% and 6% for drying shrinkage test. The range of cement contents required for unconfined compressive strength of cement treated recycling base (CTRB) are 5% to 6%. The cement content used at Boyolali - Kartosuro road rehabilitation was 5.5%. Drying shrinkage during 28 days is 805.3 micro strain for the cement content of 5% and 826.3 micro strain for the cement content of 6%. The drying shrinkage of the materials was quite high for CTRB, so that carefully design and attention need to take into account to avoid the cracks at the road base and the prospective of reflective cracking at the surface course of the road.


2018 ◽  
Vol 30 (12) ◽  
pp. 04018333 ◽  
Author(s):  
Bingye Han ◽  
Jianming Ling ◽  
Xiang Shu ◽  
Hongren Gong ◽  
Yiren Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document