Preparation and Properties of Porous Hydroxyapatite Ceramics by Three Dimensional Stacking with Homogeneous Fibers

2014 ◽  
Vol 910 ◽  
pp. 23-26
Author(s):  
Lie Feng Liang ◽  
Jun Jie Chen ◽  
Yong He ◽  
Dai Yang Li

A new technique to prepare macroporous hydroxyapatite (HA) scaffolds was introduced. Porous HA ceramics were prepared by sol-gel method from chitin dissolved in dimethylacetylamide (DMAc) / lithium chloride (LiCl) solvent, three dimensional stacking with HA gel fibers and pore agent. The blocks dried were heated to optimum sintering temperature of 1280°C. The porous HA ceramics reinforced by homogeneous fibers, with interconnected pores and high porosity and pore-diameter were obtained, whilst improving mechanical strength. Sintered ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis confirmed that the crystal structure remained HA. SEM showed the samples presented a highly interconnected porous reticulate structure with average pore size ranging from 340μm to 450μm. The porosity was varied from 61% to 83%. The maximum compressive strength of HA ceramic was 3.4MPa.The mechanical strength of samples was improved with addition of homogeneous fibers.

2021 ◽  
Vol 13 (14) ◽  
pp. 7593
Author(s):  
Farooq Khan Niazi ◽  
Malik Adeel Umer ◽  
Ashfaq Ahmed ◽  
Muhammad Arslan Hafeez ◽  
Zafar Khan ◽  
...  

Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids.


2005 ◽  
Vol 885 ◽  
Author(s):  
Krithi Shetty ◽  
Shihuai Zhao ◽  
Wei Cao ◽  
Naidu V. Seetala ◽  
Debasish Kuila

ABSTRACTThe goal of this research is to investigate the activities of a non-noble nano-catalyst (Ni/SiO2) using Si-microreactors for steam reforming of methanol to produce hydrogen for fuel cells. The supported catalyst was synthesized by sol-gel method using Ni (II) salts and Si(C2H5O)4 as starting materials. EDX results indicate that the actual loading of Ni (5-6%) is lower than the intended loading of 12 %. The specific surface area of the silica sol-gel encapsulated Ni nano-catalyst is 452 m2/g with an average pore size of ∼ 3 nm. Steam reforming reactions have been carried out in a microreactor with 50 µm channels in the temperature range of 180-240 °C and atmospheric pressure. Results show 53% conversion of methanol with a selectivity of 74 % to hydrogen at 5 l/min and 200 °C. The magnetic properties of the catalysts were performed using a Vibrating Sample Magnetometer (VSM) to study the activity of the catalysts before and after the steam reforming reactions. The VSM results indicate much higher activity in the microreactor compared to macro-reactor and Ni forms non-ferromagnetic species faster in the microreactor.


2000 ◽  
Vol 612 ◽  
Author(s):  
Sylvie Acosta ◽  
André Ayral ◽  
Christian Guizard ◽  
Charles Lecornec ◽  
Gérard Passemard ◽  
...  

AbstractPorous silica exhibits attractive dielectric properties, which make it a potential candidate for use as insulator into interconnect structures. A new way of preparation of highly porous silica layers by the sol-gel route was investigated and is presented. The synthesis strategy was based on the use of common and low toxicity reagents and on the development of a simple process without gaseous ammonia post-treatment or supercritical drying step. Defect free layers were deposited by spin coating on 200 mm silicon wafers and characterized. Thin layers with a total porosity larger than 70% and an average pore size of 5 nm were produced. The dielectric constant measured under nitrogen flow on these highly porous layers is equal to ∼ 2.5, which can be compared to the value calculated from the measured porosity, ∼ 1.9. This difference is explained by the presence of water adsorbed on the hydrophilic surface of the unmodified silica.


2014 ◽  
Vol 1004-1005 ◽  
pp. 670-674 ◽  
Author(s):  
Dian Quan Dong ◽  
Hong Bo Dai ◽  
Jian Guo Zheng

Polystyrene microspheres with 120nm diameter were synthesized by emulsion polymerization and three-dimensionally ordered colloidal crystal templates were obtained by centrifugal sedimentation.Three dimensionally ordered nanopore (3DON) manganese oxide lithium ion-sieve was prepared after filtration, two heated roasting and acid modified by using precursor solution filling the colloidal crystal templates, which was prepared by Lithium salt, manganese salt and citric acid. SEM, XRD, and saturated exchange capacity test were used to characterize the roasting condition, appearance, structure, and ion exchange performance of the oxide. The results showed that, the optimum roasting condition of preparing lithium ion-sieve precursors were found as follows: heating rate at 2°C/min, 300 °C roasting 4h and 800 °C roasting 8h, The 3DON Li4Mn5O12lithium ion sieve precursor has the shape of three-dimensional cross-linked connected into the network structure. Li4Mn5O12was regularly arranged and the hole wall was integrity,average pore size of approximately 90nm.3DON Li4Mn5O12 showed good stability for acid and the retrofit of lithium ion-sieve showed a high selectivity for Li+. The saturated exchange capacity of Li+is 51.98mgLi+/g.


2011 ◽  
Vol 493-494 ◽  
pp. 890-895 ◽  
Author(s):  
Francesca Gervaso ◽  
Francesca Scalera ◽  
Sanosh Kunjalukkal Padmanabhan ◽  
Antonio Licciulli ◽  
Daniela Deponti ◽  
...  

In this work a novel three-dimensional ostechondral substitute is proposed that is made of an inorganic/organic hybrid material, namely collagen/hydroxyapatite. The two components of the substitute have been characterized separately. The inorganic part, a hydroxyapatite scaffold, was fabricated by a polymer sponge templating method using a reactive sub-micron powder synthesized in our laboratory by hydroxide precipitation sol-gel route. The organic part, a collagen scaffold, was fabricated by a freeze-dying technique varying design parameters. Both the parts were analysed by scanning electron microscopy and their mechanical properties assessed by compression tests. The hydroxyapatite scaffold showed a high and highly interconnected porosity and a mechanical strength equal to 0.55 MPa, higher than those reported in literature. The collagen scaffolds were seeded by chondrocytes, processed for histology analysis and tested in compression. The biological tests proved the ability of the scaffolds to be positively populated by chondrocytes and the mechanical analysis showed that the mechanical strength of the scaffolds significantly increased after 3 weeks of culture.


2020 ◽  
Vol 850 ◽  
pp. 144-150
Author(s):  
Agija Stanke ◽  
Valdis Kampars ◽  
Oana A. Lazar ◽  
Marius Enachescu

In this study Fe2O3/SBA-15 catalyst was synthesized via direct synthesis method under acidic conditions using triblock copolymer Pluronic P123 as template, tetraethyl orthosilicate as a silica source and Fe (NO3)3∙9H2O as iron source. Template was removed using extraction and calcination. The obtained catalyst was characterized using XRD analysis, WDXRF spectroscopy, N2 adsorption-desorption analysis and STEM–EDX measurements. Results of catalyst characterization showed that the synthesized Fe2O3/SBA-15 is mesoporous silica with 2D p6mm hexagonal mesostructure loaded with 15.6 wt.% Fe2O3. Average pore size was 6.95 nm, homogeneous immobilized Fe2O3 nanoparticles do not disrupt the porous hexagonal structure of the support.


2019 ◽  
Vol 97 (9) ◽  
pp. 642-650 ◽  
Author(s):  
Gabriel O. Oladipo ◽  
Akinola K. Akinlabi ◽  
Samson O. Alayande ◽  
Titus A.M. Msagati ◽  
Hlengilizwe H. Nyoni ◽  
...  

In this study, TiO2 nanocrystals, 1 mol% Ag-doped TiO2, and 1 mol% Ag and 0.6 mol% Zn co-doped TiO2 powders were synthesized by the sol–gel route. Their photocatalytic activities on methyl orange dye under visible irradiation were investigated. The powders were characterized by X-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), Brunauer–Emmett–Teller (BET), and Fourier transform infrared spectroscopy (FTIR). The XRD results revealed the presence of a rutile phase with an average crystallite size of 9 and 11 nm. The UV–vis spectra showed a red-shift towards a longer wavelength with the corresponding decrease in band gap from 2.9 to 2.5 eV. The BET surface areas of the nanoparticles ranged from 4.7 to 11.8 m2 g−1 with an average pore size between 18.9 and 56.6 nm. The Ag-doped TiO2 has the largest surface area of 11.8 m2 g−1, whereas the Ag–Zn co-doped TiO2 was found to have the highest pore size and volume. The absorption bands at 750–500 cm−1 were attributed to the –O–Ti–O– bond in the TiO2 lattice. The photocatalytic efficiency was highest at an optimum pH of 4.1 for Ag–Zn co-doped TiO2. The results confirmed that Ag-doped and Ag–Zn co-doped TiO2 were more effective than pure TiO2. The kinetic data were fitted into a pseudo first-order equation using a Langmuir–Hinshelwood kinetic model.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianqing Gong ◽  
Ke Li

Relatively high drying shrinkage and permeability were two of the major challenges associated with foam concrete (FC), primarily due to its high porosity nature. This study was aimed at reducing the drying shrinkage and improving the impermeability of FC by blending and modifying it with epoxy resin (EP). Extensive laboratory testing yielded an optimum content of 4.0% EP, corresponding to a minimum drying shrinkage rate of 1.47 mm/m, which was 48% lower than that of the unmodified FC. At this optimum dosage of 4.0% EP, the permeability pressure was at a maximum level of 1.4 MPa, whereas the permeability coefficient was at its lowest value of 0.75 × 10−9  mm/h. Internal pore structure and EP distribution were characterized using the scanning electron microscopy and indicated that a microgrid structure of the FC was formed internally, featuring an increase in the number of pores, a reduction in the average pore size, and a uniform pore size distribution. Similarly, surface energy measurements using the tensiometry method yielded maximum surface energy values at 4.0% EP content, which could be used to explain the reduced drying shrinkage and the enhanced impermeability characteristics of the modified FC.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 179 ◽  
Author(s):  
Shiao-Wen Tsai ◽  
Wen-Xin Yu ◽  
Pai-An Hwang ◽  
Sheng-Siang Huang ◽  
Hsiu-Mei Lin ◽  
...  

Hydroxyapatite (HAp) is the main inorganic component and an essential part of hard bone and teeth. Due to its excellent biocompatibility, bioactivity, and osteoconductivity, synthetic HAp has been widely used as a bone substitute, cell carrier, and therapeutic gene or drug carrier. Recently, numerous studies have demonstrated that strontium-substituted hydroxyapatite (SrHAp) not only enhances osteogenesis but also inhibits adipogenesis in mesenchymal stem cells. Mesoporous SrHAp has been successfully synthesized via a traditional template-based process and has been found to possess better drug loading and release efficiencies than SrHAp. In this study, strontium-substituted hydroxyapatite-CaO-CaCO3 nanofibers with a mesoporous structure (mSrHANFs) were fabricated using a sol–gel method followed by electrospinning. X-ray diffraction analysis revealed that the contents of CaO and CaCO3 in the mSrHANFs decreased as the doping amount of Sr increased. Scanning electron microscopy (SEM) images showed that the average diameter of the mSrHANFs was approximately 200~300 nm. The N2 adsorption–desorption isotherms demonstrated that the mSrHANFs possessed a mesoporous structure and that the average pore size was approximately 20~25 nm. Moreover, the mSrHANFs had excellent drug- loading efficiency and could retard the burst release of tetracycline (TC) to maintain antibacterial activity for over 3 weeks. Hence, mSrHANFs have the potential to be used as drug carriers in bone tissue engineering.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document