The Concentration Levels of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Qiantang River Waters of China

2014 ◽  
Vol 955-959 ◽  
pp. 2106-2109 ◽  
Author(s):  
Hui Ying Xu ◽  
Jian Qing Zhu ◽  
Wei Wang ◽  
Yin Lu ◽  
Xiao Lu Xu

To characterize the concentration levels of PFOS and PFOA in the Qiantang River waters of China, 12 water samples were collected in May 2013 and analyzed. The concentrations of PFOS and PFOA were from n.d to 0.798 ng/L and from 65.9 to 102.4 ng/L, respectively. PFOS has been observed at a low concentration in these samples, while PFOA was detected in 100% of the samples with higher PFOA concentrations. PFOA concentrations were far higher than those of PFOS in all the samples, which subjected to be influenced by the inflows of the chemicals from a lot of the textile dyeing industry along the south bank of the river. Although the PFOS and PFOA concentration in Qiantang River water samples did not exceeded this provisional health advisory level (limit) established by the United States Environmental Protection Agency for PFOS and PFOA in drinking waters of 200 ng/L and 400 ng/L respectively, continued exposure to even relatively low PFOS and PFOA concentrations in drinking water may increase the risk of health effects.

Author(s):  
Yadong Kong ◽  
Ping Lu ◽  
Tao Yuan ◽  
Jinghui Niu ◽  
Zhaoji Li ◽  
...  

Swimming in surface water bodies (e.g., lakes, rivers) can expose the human body to substantial risk of infection by Cryptosporidium. These findings are from a one-year investigation on the occurrence and distribution of the protozoan parasite Cryptosporidium in Yunlong Lake, Xuzhou, China. Cryptosporidium oocysts were detected by immunofluorescence microscopy. From January to November of 2015, 180 samples (120 water samples and 60 sediment samples) were collected and analyzed. Among them, 42 (35%) water samples and 28 (47%) sediment samples tested positive for Cryptosporidium. The concentration of Cryptosporidium oocysts in the water samples was 0–8/10 L and 0–260/g in sediment samples. Results revealed that July was the highest risk period for both swimming and diving with an estimated probability of infection from swimming of greater than 18 per 10,000 swim sessions. It was concluded that swimming or diving in Yunlong Lake has a higher risk of Cryptosporidium infection than the acceptable risk level set by the United States Environmental Protection Agency. Thus, regular monitoring of water quality in recreation water bodies is strongly recommended.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 807-813 ◽  
Author(s):  
David R. Shaw ◽  
Stephen M. Schraer ◽  
Joby Prince ◽  
Michele Boyette

A two-year surface water reconnaissance of the Bogue Phalia and its tributaries was conducted in 1997 and 1998. Cyanazine and metolachlor in surface water samples were quantified using enzyme-linked immunosorbent assays (ELISA). Cyanazine and metolachlor were detected in 101 and 132 of 160 samples, respectively. Cyanazine concentrations ranged from 0.1 to 2.2 g L−1and exceeded the U.S. Environmental Protection Agency (EPA) lifetime health advisory level (HAL) of 1 g L−1in eight samples. However, concentrations never exceeded the HAL for shorter exposure times. Metolachlor concentrations never reached the lifetime HAL of 100 g L−1. Metolachlor concentrations ranged from 0.1 to 20.6 g L−1. Metolachlor was detected more frequently and found to be more persistent throughout the growing season than was cyanazine. Higher cyanazine and metolachlor concentrations were detected at sampling dates that coincided with herbicide applications. One of the Bogue Phalia's tributaries, Clear Creek, was found to be a point-source of cyanazine for the watershed.


Author(s):  
Christine Samuel-Nakamura ◽  
Felicia S. Hodge ◽  
Sophie Sokolow ◽  
Abdul-Mehdi S. Ali ◽  
Wendie A. Robbins

More than 500 unreclaimed mines and associated waste sites exist on the Navajo Nation reservation as a result of uranium (U) mining from the 1940s through the 1980s. For this study, the impact of U-mine waste on a common, locally grown crop food was examined. The goal of this site-specific study was to determine metal(loid) concentration levels of arsenic (As), cadmium (Cd), cesium (Cs), molybdenum (Mo), lead (Pb), thorium (Th), U, vanadium (V) and selenium (Se) in Cucurbita pepo Linnaeus (squash), irrigation water, and soil using inductively coupled plasma-mass spectrometry. The concentrations of metal(loid)s were greatest in roots > leaves > edible fruit (p < 0.05), respectively. There were significant differences between metal(loid)s in squash crop plot usage (<5 years versus >30 years) for V (p = 0.001), As (p < 0.001), U (p = 0.002), Cs (p = 0.012), Th (p = 0.040), Mo (p = 0.047), and Cd (p = 0.042). Lead and Cd crop irrigation water concentrations exceeded the United States Environmental Protection Agency (USEPA) Maximum Contaminant Levels for drinking water for those metals. Edible squash concentration levels were 0.116 mg/kg of As, 0.248 mg/kg of Pb, 0.020 mg/kg of Cd, and 0.006 mg/kg of U. Calculated human ingestion of edible squash did not exceed Provisional Tolerable Weekly Intake or Tolerable Upper Limit levels from intake based solely on squash consumption. There does not appear to be a food-ingestion risk from metal(loid)s solely from consumption of squash. Safer access and emphasis on consuming regulated water was highlighted. Food intake recommendations were provided. Continued monitoring, surveillance, and further research are recommended.


Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 58
Author(s):  
Okpara Kingsley ◽  
Banchong Witthayawirasak

Phthalate esters (PAEs) are well known for their environmental contamination and endocrine-disrupting effects on wildlife and humans. In this study, the occurrence of PAEs and ecotoxicological risk assessments were performed in one of the significant canals in southern Thailand, named U-Tapao. Water samples were collected and analyzed for the six most common PAEs by using a gas chromatograph-mass spectrometer (GC-MS). Of the 6 PAEs analyzed, only three PAEs, including di-n-butyl phthalate (DBP), di (2-Ethylhexyl) phthalate (DEHP), and diisononyl phthalate (DiNP) were detected in water samples. The total concentration of PAEs ranged from 1.44 to 12.08 µg/L, with a mean level of 4.76 µg/L. The total average concentration of PAEs found in the canal was higher than the criteria of 3 µg/L for PAEs recommended for the protection of fish and other aquatic organisms by the United States Environmental Protection Agency (USEPA). The results of the potential ecological risk assessment of the risk quotient (RQ) method revealed that DEHP and DiNP posed a high risk to algae and crustacean and crustacean and fish, respectively, whereas DBP posed a medium risk to the different aquatic species. However, current levels of noncarcinogenic and carcinogenic risks via ingestion and dermal exposure in children and adults are within acceptable limits. The baseline data of PAEs in this canal will be beneficial to the strategic and future pollutant control along the canal network.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 685-698
Author(s):  
J. J. Convery ◽  
J. F. Kreissl ◽  
A. D. Venosa ◽  
J. H. Bender ◽  
D. J. Lussier

Technology transfer is an important activity within the ll.S. Environmental Protection Agency. Specific technology transfer programs such as the activities of the Center for Environmental Research Information, the Innovative and Alternative Technology Program, as well as the Small Community Outreach Program are used to encourage the utilization of cost-effective municipal pollution control technology. Case studies of three technologies including a plant operations diagnostic/remediation methodology, alternative sewer technologies and ultraviolet disinfection are presented. These case studies are presented retrospectively in the context of a generalized concept of how technology flows from science to utilization which was developed in a study by Allen (1977). Additional insights from this study are presented on the information gathering characteristics of engineers and scientists which may be useful in designing technology transfer programs. The recognition of the need for a technology or a deficiency in current practice are important stimuli other than technology transfer for accelerating the utilization of new technology.


2021 ◽  
pp. 074823372110195
Author(s):  
Fatemeh Dehghani ◽  
Fariborz Omidi ◽  
Reza Ali Fallahzadeh ◽  
Bahman Pourhassan

The present work aimed to evaluate the health risks of occupational exposure to heavy metals in a steel casting unit of a steel plant. To determine occupational exposure to heavy metals, personal air samples were taken from the workers’ breathing zones using the National Institute for Occupational Safety and Health method. Noncancer and cancer risks due to the measured metals were calculated according to the United States Environmental Protection Agency procedures. The results indicated that the noncancer risks owing to occupational exposure to lead (Pb) and manganese were higher than the recommended value in most of the workstations. The estimated cancer risk of Pb was also higher than the allowable value. Moreover, the results of sensitivity analysis indicated that the concentration, inhalation rate, and exposure duration were the most influencing variables contributing to the calculated risks. It was thus concluded that the present control measures were not adequate and further improvements were required for reducing the exposure levels.


Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 37
Author(s):  
Przemysław Niziński ◽  
Patrycja Wiśniewska ◽  
Joanna Kończyk ◽  
Rajmund Michalski

Perchlorate ion (ClO4−) is known as a potent endocrine disruptor and exposure to this compound can result in serious health issues. It has been found in drinking water, swimming pools, and surface water in many countries, however, its occurrence in the environment is still poorly understood. The information on perchlorate contamination of Polish waters is very limited. The primary objective of this study was to assess ClO4− content in bottled, tap, river, and swimming pool water samples from different regions of Poland and provide some data on the presence of perchlorate. We have examined samples of bottled, river, municipal, and swimming pool water using the IC–CD (ion chromatography–conductivity detection) method. Limit of detection and limit of quantification were 0.43 µg/L and 1.42 µg/L, respectively, and they were both above the current health advisory levels in drinking water. The concentration of perchlorate were found to be 3.12 µg/L in one river water sample and from 6.38 to 8.14 µg/L in swimming pool water samples. Importantly, the level of perchlorate was below the limit of detection (LOD) in all bottled water samples. The results have shown that the determined perchlorate contamination in Polish drinking waters seems to be small, nevertheless, further studies are required on surface and river samples. The inexpensive, fast, and sensitive IC–CD method used in this study allowed for a reliable determination of perchlorate in the analyzed samples. To the best of our knowledge, there are no other studies seeking to assess the perchlorate content in Polish waters.


2021 ◽  
Vol 44 (1) ◽  
pp. 194-202
Author(s):  
Funda Demir ◽  
Meral Yildirim Ozen ◽  
Emek Moroydor Derun

Abstract In this study, essential (Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn), and non-essential (Al, Ni, Pb) element contents of the drinking and baby water samples which are sold in the local market and tap water samples in Istanbul were examined. It was determined that elements of Cr, Cu, Fe, P, Zn, Al, and Ni were below detection limits in all water samples. Among the non-essential elements analyzed in water samples, Pb was the only detected element. At the same time, the percentages that meet the daily element requirements of infants were also calculated. As a result of the evaluations made, there is no significant difference in infant nutrition between baby waters and other drinking waters in terms of the element content.


2021 ◽  
Vol 13 (4) ◽  
pp. 1878
Author(s):  
Alan R. Hunt ◽  
Meiyin Wu ◽  
Tsung-Ta David Hsu ◽  
Nancy Roberts-Lawler ◽  
Jessica Miller ◽  
...  

The National Wild and Scenic Rivers Act protects less than ¼ of a percent of the United States’ river miles, focusing on free-flowing rivers of good water quality with outstandingly remarkable values for recreation, scenery, and other unique river attributes. It predates the enactment of the Clean Water Act, yet includes a clear anti-degradation principle, that pollution should be reduced and eliminated on designated rivers, in cooperation with the federal Environmental Protection Agency and state pollution control agencies. However, the federal Clean Water Act lacks a clear management framework for implementing restoration activities to reduce non-point source pollution, of which bacterial contamination impacts nearly 40% of the Wild and Scenic Rivers. A case study of the Musconetcong River, in rural mountainous New Jersey, indicates that the Wild and Scenic Rivers Act can be utilized to mobilize and align non-governmental, governmental, philanthropic, and private land-owner resources for restoring river water quality. For example, coordinated restoration efforts on one tributary reduced bacterial contamination by 95%, surpassing the TMDL goal of a 93% reduction. Stakeholder interviews and focus groups indicated widespread knowledge and motivation to improve water quality, but resource constraints limited the scale and scope of restoration efforts. The authors postulate that the Partnership framework, enabled in the Wild and Scenic Rivers Act, facilitated neo-endogenous rural development through improving water quality for recreational usage, whereby bottom-up restoration activities were catalyzed via federal designation and resource provision. However, further efforts to address water quality via voluntary participatory frameworks were ultimately limited by the public sector’s inadequate funding and inaction with regard to water and wildlife resources in the public trust.


Sign in / Sign up

Export Citation Format

Share Document