Study of Kirkendall Effect in Ni/Ni3Al Welded Joint after the High Temperature Annealing

2007 ◽  
Vol 263 ◽  
pp. 213-218 ◽  
Author(s):  
Monika Losertová ◽  
Karla Čech Barabaszová ◽  
Jaromír Drápala ◽  
Miroslav Kursa

The study of composition and microstructure of welded joints was performed before and after the diffusion annealing at elevated temperatures for different annealing time. The Kirkendall effect in the Ni/Ni3Al diffusion couples was observed by means of different methods, e.g. using light, scanning electron and atomic force microscopies. The study suitably completes and specifies the morphology features of Kirkendall voids at different evolution stages, i.e. at nucleation, growing and coalescence. Kirkendall voids occurred in the region between the Matano and γ/γ´interface planes. The location of the γ/γ´ interface that moved in the direction of Ni3Al phase during the annealing resulted from the Al concentration profile measured by EDAX. The Matano plane location was determined by means of Boltzmann-Matano’s method using concentration profile data. It was observed that the void size was increasing in the direction from the Matano plane to the γ/γ´ interface. The obtained results were completed by surface topography of Kirkendall voids of slightly etched specimens by atomic force microscopy (AFM).

Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2021 ◽  
Vol 63 (9) ◽  
pp. 1437
Author(s):  
А.С. Комолов ◽  
Э.Ф. Лазнева ◽  
Е.В. Жижин ◽  
Э.К. Алиджанов ◽  
Ю.Д. Лантух ◽  
...  

The morphology of organic semiconductor films of perylenetetracarboxylic acid dianhydride (PTCDA) and perylenetetracarboxylic acid dibenzyl-diimide (N, N`-DBPTCDI) formed by thermal vacuum deposition was studied by atomic force microscopy. It was shown that annealing of films at 420 K leads to rearrangement of their structure and crystallization. The optical absorption spectra of the films under study were used to estimate the optical band gap. The temperature dependence of the dark conductivity of PTCDA and N, N-DBPTCDI films before and after annealing (Т = 420 K) was established. The values of the activation energy of charge carrier traps are determined. The computer simulation of the density of localized states in the band gap of the films studied was carried out using the photoconductivity spectra in the constant photocurrent mode. Model photovoltaic cells based on PTCDA / СuPc and N, N-DBPTCDI / СuPc structures were formed. The kinetics of decay of the interfacial photo-voltage of the cells prepared was measured using pulsed light as an excitation source. On the basis of the performed measurements, the charge carrier mobility values in the investigated semiconductor materials were estimated.


2018 ◽  
Vol 12 (01) ◽  
pp. 057-066 ◽  
Author(s):  
Maleeha Nayyer ◽  
Shahreen Zahid ◽  
Syed Hammad Hassan ◽  
Salman Aziz Mian ◽  
Sana Mehmood ◽  
...  

ABSTRACT Objective: The objective of this study was to assess the surface properties (microhardness and wear resistance) of various composites and compomer materials. In addition, the methodologies used for assessing wear resistance were compared. Materials and Methods: This study was conducted using restorative material (Filtek Z250, Filtek Z350, QuiXfil, SureFil SDR, and Dyract XP) to assess wear resistance. A custom-made toothbrush simulator was employed for wear testing. Before and after wear resistance, structural, surface, and physical properties were assessed using various techniques. Results: Structural changes and mass loss were observed after treatment, whereas no significant difference in terms of microhardness was observed. The correlation between atomic force microscopy (AFM) and profilometer and between wear resistance and filler volume was highly significant. The correlation between wear resistance and microhardness were insignificant. Conclusions: The AFM presented higher precision compared to optical profilometers at a nanoscale level, but both methods can be used in tandem for a more detailed and precise roughness analysis.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 4347-4351 ◽  
Author(s):  
H. PRESTING ◽  
J. KONLE ◽  
H. KIBBEL

Silicon solar cells with embedded germanium (Ge) layers deposited as 3-dimensional islands in the Stranski-Krastanov growth mode have been grown by molecular beam epitaxy (MBE) to enhance the efficiency of Si thin film solar cells. The Ge-layers increase the infrared absorption in the base of the cell to achieve higher photocurrent which should overcome the loss in the open circuit voltage due to incorporation of a smaller bandgap material in the heterostructure. Up to 75 layers of Ge, each about 8 monolayers (ML) thick, separated by Si-spacer layers (9-18nm) have been deposited at rather elevated temperatures (700°C) on a standard 10Ωcm p-type Si-substrate. Island densities of 1011 cm -2 have been achieved by use of antimony (Sb) as surfactant. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to characterize the growth of Ge-islands under variuos growth conditions. Photocurrent measurements exhibit a higher photo-response in the infrared regime but a lower open circuit voltage of the fabricated solar cells compared to a Si-reference cell.


2010 ◽  
Vol 25 (4) ◽  
pp. 708-710 ◽  
Author(s):  
Atsushi Ogura ◽  
Daisuke Kosemura ◽  
Shingo Kinoshita

4H-silicon carbide (SiC) wafers were annealed at 1300 and 1600 °C for 30 min and 60 min in a conventional and purified Ar atmosphere. The surface roughness before and after annealing was evaluated by atomic force microscopy. The surface roughness before annealing was approximately 2.37 nm in root mean square. The roughness, after annealing for 30 min at 1300 and 1600 °C in a conventional Ar furnace, was increased to 4.53 and 14.9 nm, respectively. The roughness, after annealing for 60 min, was 5.01 and 19.1 nm, respectively. In this study, the G3 grade Ar gas (99.999%) was supplied in the conventional furnace tube. When the Ar gas was purified to an impurity concentration of less than 1 ppb, and it was supplied in the leak-tight furnace tube, the roughness after 30-min annealing improved 4.27 and 6.93 nm at 1300 and 1600 °C, respectively. The roughness after 60-min annealing was also reduced to 3.54 and 9.28 nm, respectively. We assume that a significant reduction of H2O concentration in the annealing atmosphere might play an important role in suppressing surface roughening of SiC during high-temperature annealing.


2000 ◽  
Vol 624 ◽  
Author(s):  
G.J. Berry ◽  
J.A. Cairns ◽  
M.R. Davidson ◽  
Y.C. Fan ◽  
A.G. Fitzgerald ◽  
...  

ABSTRACTAs the trend towards device miniaturisation continues, surface effects and the thermal stability of metal deposits becomes increasingly important. We present here a study of the morphology and composition of platinum films, produced by the UV-induced decomposition of organometallic materials, under various annealing conditions. The surface composition of the metal deposits was studied by X-ray photoelectron spectroscopy, both as-deposited and following thermal treatment. In addition, the morphology of the surface was studied by atomic force microscopy which enabled the investigation of film restructuring. These studies were performed over a range of temperatures up to 1000°C in air and up to 600°C in reducing environments. Complementary information regarding the film morphology has been obtained from transmission electron microscopy. The data has been used to provide an insight into the effects of elevated temperatures on metal films deposited by a direct write method


2016 ◽  
Vol 7 ◽  
pp. 581-590 ◽  
Author(s):  
Khurshid Ahmad ◽  
Xuezeng Zhao ◽  
Yunlu Pan ◽  
Danish Hussain

Spherical domains that readily form at the polystyrene (PS)–water interface were studied and characterized using atomic force microscopy (AFM). The study showed that these domains have similar characteristics to micro- and nanobubbles, such as a spherical shape, smaller contact angle, low line tension, and they exhibit phase contrast and the coalescence phenomenon. However, their insensitivity to lateral force, absence of long-range hydrophobic attraction, and the presence of possible contaminants and scratches on these domains suggested that these objects are most likely blisters formed by the stretched PS film. Furthermore, the analysis of the PS film before and after contact with water suggested that the film stretches and deforms after being exposed to water. The permeation of water at the PS–silicon interface, caused by osmosis or defects present on the film, can be a reasonable explanation for the nucleation of these spherical domains.


Sign in / Sign up

Export Citation Format

Share Document