Facile Synthesis of Fe3O4 Nanoparticles Loaded on Activated Carbon Developed from Lotus Seed Pods for Removal of Ni(II) Ions

2020 ◽  
Vol 61 ◽  
pp. 1-17
Author(s):  
Thi Kieu Ngan Tran ◽  
Thi Thanh Nhi Le ◽  
Hoang Sinh Le ◽  
Dai Lam Tran ◽  
Quang Vinh Nguyen ◽  
...  

In this study, a simple one-step synthetic approach using lotus seed pods and iron(III) chloride has been developed to prepare Fe3O4 nanoparticles loaded activated carbon composite (Fe3O4-NPs/AC) for removal of Ni(II) ions from aqueous solution. The physical and chemical characteristics of Fe3O4-NPs/AC were comprehensively analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and Brunauer–Emmett–Teller analysis. On account of the combined advantages of lotus seed pod carbon and Fe3O4 nanoparticles, the Fe3O4-NPs/AC showed excellent adsorption efficiency for Ni(II) ions with the maximum adsorption capacity of 50.72 mg g-1 at optimal conditions (pH of 6, contact time of 60 min, 25 °C, and adsorbent dosage of 4.0 g L-1). It was found that the adsorption process of Ni(II) on Fe3O4-NPs/AC was feasible, spontaneous and endothermic, and was well described by the Langmuir isotherm model and pseudo-first-order kinetic equation. The Fe3O4-NPs/AC composite also showed good reusability with removal efficiency of greater than 86.25% after five cycles of reuse.

Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 224
Author(s):  
Ismat H. Ali ◽  
Mutasem Z. Bani-Fwaz ◽  
Adel A. El-Zahhar ◽  
Riadh Marzouki ◽  
Mosbah Jemmali ◽  
...  

In this study, a gum Arabic-magnetite nanocomposite (GA/MNPs) was synthesized using the solution method. The prepared nanocomposite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). The prepared composite was evaluated for the adsorption of lead(II) ions from aqueous solutions. The controlling factors such as pH, contact time, adsorbent dose, initial ion concentration, and temperature were investigated. The optimum adsorption conditions were found to be 0.3 g/50 mL, pH = 6.00, and contact time of 30 min. The experimental data well fitted the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity was determined as 50.5 mg/g. Thermodynamic parameters were calculated postulating an endothermic and spontaneous process and a physio-sorption pathway.


2013 ◽  
Vol 69 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Babak Kakavandi ◽  
Ali Esrafili ◽  
Anoushiravan Mohseni-Bandpi ◽  
Ahmad Jonidi Jafari ◽  
Roshanak Rezaei Kalantary

In the present study, powder activated carbon (PAC) combined with Fe3O4 magnetite nanoparticles (MNPs) were used for the preparation of magnetic composites (MNPs-PAC), which was used as an adsorbent for amoxicillin (AMX) removal. The properties of magnetic activated carbon were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunaeur, Emmett and Teller and vibrating sample magnetometer. The operational factors affecting adsorption such as pH, contact time, adsorbent dosage, initial AMX concentration and temperature were studied in detail. The high surface area and saturation magnetization for the synthesized adsorbent were found to be 671.2 m2/g and 6.94 emu/g, respectively. The equilibrium time of the adsorption process was 90 min. Studies of adsorption equilibrium and kinetic models revealed that the adsorption of AMX onto MNPs-PAC followed Freundlich and Langmuir isotherms and pseudo-second-order kinetic models. The calculated values of the thermodynamic parameters, such as ΔG°, ΔH° and ΔS° demonstrated that the AMX adsorption was endothermic and spontaneous in nature. It could be concluded that MNPs-PAC have a great potential for antibiotic removal from aquatic media.


2020 ◽  
Vol 69 (7) ◽  
pp. 678-693
Author(s):  
R. Aouay ◽  
S. Jebri ◽  
A. Rebelo ◽  
J. M. F. Ferreira ◽  
I. Khattech

Abstract Hydroxyapatite powders were synthesized according to a wet precipitation route and then subjected to heat treatments within the temperature range of 200–800 °C. The prepared samples were tested as sorbents for cadmium in an aqueous medium. The best performances were obtained with the material treated at 200 °C (HAp200), as the relevant sorbent textural features (SBET – specific surface area and Vp – total volume of pores) were least affected at this low calcination temperature. The maximum adsorption capacity at standard ambient temperature and pressure was 216.6 mg g−1, which increased to 240.7 mg g−1 by increasing the temperature from 25 to 40 °C, suggesting an endothermic nature of the adsorption process. Moreover, these data indicated that a thermal treatment at 200 °C enhanced the ability of the material in Cd2+ uptake by more than 100% compared to other similar studies. The adsorption kinetic process was better described by the pseudo-second-order kinetic model. Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherms were applied to describe the sorption behaviour of Cd2+ ions onto the best adsorbent. Furthermore, a thermodynamic study was also performed to determine ΔH°, ΔS°, and ΔG° of the sorption process of this adsorbent. The adsorption mechanisms were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-transmission electron microscopy (SEM-TEM) observations.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 697 ◽  
Author(s):  
Francisco Alguacil ◽  
Lorena Alcaraz ◽  
Irene García-Díaz ◽  
Félix López

This work describes the adsorption of Pb2+ in aqueous solution onto an activated carbon (AC) produced from winemaking waste (cluster stalks). After characterizing the AC using Fourier transform infrared spectroscopy (FTIR) and micro-Raman spectroscopy, the influence of different physico-chemical factors (stirring rate, temperature, pH, adsorbent concentration, etc.) on its capacity to adsorb Pb2+ was examined. Kinetic and thermodynamic studies showed that the adsorption of the Pb2+ follows a pseudo-second-order kinetic model and fits the Langmuir isotherm model, respectively. The maximum adsorption capacity of the AC was 58 mg/g at 288 K temperature and pH of 4. In conclusion, ACs made from waste cluster stalks could be successfully used to remove Pb2+ from polluted water.


2017 ◽  
Vol 76 (9) ◽  
pp. 2526-2534 ◽  
Author(s):  
Meimei Zhou ◽  
Weizhen Tang ◽  
Pingping Luo ◽  
Jiqiang Lyu ◽  
Aixia Chen ◽  
...  

Abstract Ureido-functionalized mesoporous polyvinyl alcohol/silica composite nanofibre membranes were prepared by electrospinning technology and their application for removal of Pb2+ and Cu2+ from wastewater was discussed. The characteristics of the membranes were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption analysis. Results show that the membranes have long fibrous shapes and worm-like mesoporous micromorphologies. Fourier transform infrared spectroscopy confirmed the membranes were successfully functionalized with ureido groups. Pb2+ and Cu2+ adsorption behavior on the membranes followed a pseudo-second-order nonlinear kinetic model with approximately 30 minutes to equilibrium. Pb2+ adsorption was modelled using a Langmuir isotherm model with maximum adsorption capacity of 26.96 mg g−1. However, Cu2+ adsorption was well described by a Freundlich isotherm model with poor adsorption potential due to the tendency to form chelating complexes with several ureido groups. Notably, the membranes were easily regenerated through acid treatment, and maintained adsorption capacity of 91.87% after five regeneration cycles, showing potential for applications in controlling heavy metals-related pollution and metals reuse.


Author(s):  
Jianzhi Song ◽  
Varsha Srivastava ◽  
Tomas Kohout ◽  
Mika Sillanpää ◽  
Tuomo Sainio

AbstractThe treatment of stormwater to remove and recover nutrients has received increasing interest. The objective of this study was to develop a novel adsorbent that is easy to handle, has good adsorption capacity, and is economical to use. A novel nanocomposite of montmorillonite (MT)-anchored magnetite (Fe3O4) was synthesised by co-precipitation as an adsorbent for ammonium. The MT/Fe3O4 nanocomposite had pore sizes (3–13 nm) in the range of narrow mesopores. The dispersion of the anchored Fe3O4 was confirmed by transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). The nanocomposite exhibited higher affinity towards ammonium than the original MT. The Langmuir isotherm model was found to be the most suitable model to explain the ammonium adsorption behaviour of the nanocomposite. The maximum adsorption capacity for ammonium was 10.48 mg/g. The adsorption mechanism was a combination of ion exchange and electrostatic interaction. In an authentic stormwater sample, the synthesised adsorbent removed 64.2% of ammonium and reduced the amount of heavy metal contaminants including Mn, Ni, Cu and Zn. Furthermore, the ammonium loading on MT/Fe3O4 during adsorption functionalised the adsorbent surface. Additionally, the spent nanocomposite showed potential for rare earth elements (REEs) adsorption as a secondary application, especially for the selective adsorption of Sc3+. The versatile application of montmorillonite-anchored magnetite nanocomposite makes it a promising adsorbent for water treatment. Graphic abstract


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2020 ◽  
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Abdel-Basit Al-Odayni ◽  
Waseem Sharaf Saeed ◽  
Abdullah Al-Kahtani ◽  
Fahad A. Alharthi ◽  
...  

In this study, polypyrrole-based activated carbon was prepared by the carbonization of polypyrrole at 650 °C for 2 h in the presence of four-times the mass of KOH as a chemical activator. The structural and morphological properties of the product (polypyrrole-based activated carbon (PPyAC4)), analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis, support its applicability as an adsorbent. The adsorption characteristics of PPyAC4 were examined through the adsorption of lead ions from aqueous solutions. The influence of various factors, including initial ion concentration, pH, contact time, and adsorbent dose, on the adsorption of Pb2+ was investigated to identify the optimum adsorption conditions. The experimental data fit well to the pseudo-second-order kinetic model (R2 = 0.9997) and the Freundlich isotherm equation (R2 = 0.9950), suggesting a chemisorption pathway. The adsorption capacity was found to increase with increases in time and initial concentration, while it decreased with an increase in adsorbent dose. Additionally, the highest adsorption was attained at pH 5.5. The calculated maximum capacity, qm, determined from the Langmuir model was 50 mg/g.


2019 ◽  
Vol 20 (22) ◽  
pp. 5612 ◽  
Author(s):  
Asma Hamedi ◽  
Francesco Trotta ◽  
Mahmood Borhani Zarandi ◽  
Marco Zanetti ◽  
Fabrizio Caldera ◽  
...  

A new magnetic nanocomposite called MIL-100(Fe) @Fe3O4@AC was synthesized by the hydrothermal method as a stable adsorbent for the removal of Rhodamine B (RhB) dye from aqueous medium. In this work, in order to increase the carbon uptake capacity, magnetic carbon was first synthesized and then the Fe3O4 was used as the iron (III) supplier to synthesize MIL-100(Fe). The size of these nanocomposite is about 30–50 nm. Compared with activated charcoal (AC) and magnetic activated charcoal (Fe3O4@AC) nanoparticles, the surface area of MIL-100(Fe) @Fe3O4@AC were eminently increased while the magnetic property of this adsorbent was decreased. The surface area of AC, Fe3O4@AC, and MIL-100(Fe) @Fe3O4@AC was 121, 351, and 620 m2/g, respectively. The magnetic and thermal property, chemical structure, and morphology of the MIL-100(Fe) @Fe3O4@AC were considered by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET), and transmission electron microscopy (TEM) analyses. The relatively high adsorption capacity was obtained at about 769.23 mg/g compared to other adsorbents to eliminate RhB dye from the aqueous solution within 40 min. Studies of adsorption kinetics and isotherms showed that RhB adsorption conformed the Langmuir isotherm model and the pseudo second-order kinetic model. Thermodynamic amounts depicted that the RhB adsorption was spontaneous and exothermic process. In addition, the obtained nanocomposite exhibited good reusability after several cycles. All experimental results showed that MIL-100(Fe) @Fe3O4@AC could be a prospective sorbent for the treatment of dye wastewater.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yige Guo ◽  
Bin Chen ◽  
Ying Zhao ◽  
Tianxue Yang

AbstractAntibiotics are emerging pollutants and increasingly present in aquaculture and industrial wastewater. Due to their impact on the environment and health, their removal has recently become a significant concern. In this investigation, we synthesized nano zero-valent iron-loaded magnetic mesoporous silica (Fe-MCM-41-A) via precipitation and applied the adsorption of oxytetracycline (OTC) from an aqueous solution. The effects of competing ions such as Na+, Ca2+ and Cu2+ on the adsorption process under different pH conditions were studied in depth to providing a theoretical basis for the application of nanomaterials. The characterization of the obtained material through transmission electron microscopy demonstrates that the adsorbent possesses hexagonal channels, which facilitate mass transfer during adsorption. The loaded zero-valent iron made the magnetic, and was thus separated under an applied magnetic field. The adsorption of OTC onto Fe-MCM-41-A is rapid and obeys the pseudo-second-order kinetic model, and the maximum adsorption capacity of OTC is 625.90 mg g−1. The reaction between OTC and Fe-MCM-41-A was inner complexation and was less affected by the Na+. The effect of Ca2+ on the adsorption was small under acidic and neutral conditions. However, the promotion effect of Ca2+ increased by the increase of pH. Cu2+ decreased the removal efficiencies continuously and the inhibitory effects decrease varied with the increase of pH. We propose that surface complexing, ion-exchange, cationic π-bonding, hydrogen bonding, and hydrophobicity are responsible for the adsorption of OTC onto Fe-MCM-41-A.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phitchan Sricharoen ◽  
Supalak Kongsri ◽  
Chunyapuk Kukusamude ◽  
Yonrapach Areerob ◽  
Prawit Nuengmatcha ◽  
...  

AbstractWe report a novel method for the synthesis of 3-mercaptopropyl trimethoxysilane-modified hydroxyapatite (FHAP-SH) derived from fish-scale residues by using ultrasound irradiation. Scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the FHAP-SH characterization. Then, the organic dye adsorption on the FHAP-SH was monitored through an ultrasound process. After the dye removal optimization, significant improvements were observed in the maximum adsorption capacities for Congo Red (CR, 500 mg g−1), Coomassie Brilliant Blue G 250 (CB, 235 mg g−1), and Malachite Green (MG, 625 mg g−1). The adsorption behaviors of these dyes were fitted by using the Langmuir isotherm model with a high coefficient of determination values ranging from 0.9985 to 0.9969. The adsorption of the three dyes onto FHAP-SH was an endothermic process based on the adsorption thermodynamics model, while the adsorption kinetics analysis of the dyes presented a good alignment with the pseudo-second-order kinetics. The FHAP-SH exhibits a remarkably high adsorption capacity, is inexpensive, and fulfills the ecofriendly requirements of dye wastewater treatment, especially in the textile industry.


Sign in / Sign up

Export Citation Format

Share Document