Adaptability Analysis of New Ceiling Radiant Cooling Panels with Dedicated Outdoor Air Systems Used in Summer Moist Heat Regions

2012 ◽  
Vol 517 ◽  
pp. 864-869 ◽  
Author(s):  
Xu Han Zhang ◽  
Nian Ping Li ◽  
Jian Guang Yang

This paper introduces the operating principle and system components of Ceiling Radiant Cooling Panels (CRCP) with Dedicated Outdoor Air Systems (DOAS), moreover, analyses not only the advantages of CRCP/DOAS system in terms of comfort, energy conservation and healthy environmental protection, but also the three obstacles to the system when running in summer moist heat regions condensation, radiant cooling capacity and first cost. The major defect of CRCP is proposed that the surface temperature of the panel is uneven, while the shortage of DOAS is the insufficiency of outdoor air handling. A new CRCP/DOAS system is provided in this paper, including patent radiant cooling panel and patent air condition. We also expound the characteristics of this new system, and list the recommended design parameters as well.

Author(s):  
Martin Šimko ◽  
Dušan Petráš ◽  
Michal Krajčík ◽  
Daniel Szabó

Thermal output, surface temperatures, and supply and return water temperature were measured for a wall cooling system involving pipe attached to a wall section made of thermally insulating blocks. The experiment was performed for warm climatic conditions typical of, e.g., summer in Central and Northern Europe. The outdoor environment was simulated by a climatic chamber while the indoor climate was simulated by attaching a hotbox to the wall surface. The sensitivity of thermal output to several design parameters was investigated by 2D numerical simulations. The measurements showed a fast thermal response of the wall system. The cooling output was 38.3 W per m2 of the cooling area which equalled about 4.8 W/m2 per 1 K temperature difference between water and hotbox. The lowest surface temperature of 19.6 °C was measured at the pipe. Thus, the cooling output could be enhanced by reducing the surface temperature closer to the dew point temperature. The temperature of water in the pipe was very close to the surface temperature. It was illustrated how this characteristic of the wall cooling system tested positively affects the efficiency and cooling capacity of an air-to-water heat pump.


2019 ◽  
Vol 111 ◽  
pp. 01001
Author(s):  
Hansol Lim ◽  
Hye-Jin Cho ◽  
Seong-Yong Cheon ◽  
Soo-Jin Lee ◽  
Jae-Weon Jeong

A phase change material based radiant cooling panel with thermoelectric module (PCM-TERCP) is proposed in this study. It consists of two aluminium panels, and phase change materials (PCMs) sandwiched between the two panels. Thermoelectric modules (TEMs) are attached to one of the aluminium panels, and heat sinks are attached to the top side of TEMs. PCM-TERCP is a thermal energy storage concept equipment, in which TEMs freeze the PCM during the night whose melting temperature is 16○C. Therefore, the radiant cooling panel can maintain a surface temperature of 16◦C without the operation of TEM during the day. Furthermore, it is necessary to design the PCM-TERCP in a way that it can maintain the panel surface temperature during the targeted operating time. Therefore, the numerical model was developed using finite difference method to evaluate the thermal behaviour of PCM-TERCP. Experiments were also conducted to validate the performance of the developed model. Using the developed model, the possible operation time was investigated to determine the overall heat transfer coefficient required between radiant cooling panel and TEM. Consequently, the results showed that a overall heat transfer coefficient of 394 W/m2K is required to maintain the surface temperature between 16○C to 18○C for a 3 hours operation.


2021 ◽  
Vol 16 (3) ◽  
pp. 155-177
Author(s):  
Shouib Mabdeh ◽  
Tamer Al Radaideh ◽  
Montaser Hiyari

ABSTRACT Thermal comfort has a great impact on occupants’ productivity and general well-being. Since people spend 80–90% of their time indoors, developing the tools and methods that enhance the thermal comfort for building are worth investigating. Previous studies have proved that using passive systems like Trombe walls and solar chimneys significantly enhanced thermal comfort in inside spaces despite that each system has a specific purpose within a specific climate condition. Hence, the main purpose of this study is to design and configure a new, dual functional passive system, called a solar wall. The new system combines the Trombe wall and solar chimney, and it can cool or heat based on building needs. Simulation software, DesignBuilder, has been used to configure the Solar Wall, and study its impact on indoor operative temperature for the base case. Using the new system, the simulation results were compared with those obtained in the base case and analyzed to determine the most efficient system design parameters and implementation method. The case that gave the best results for solar wall configuration was triple glazed glass and 0.1 cm copper as an absorber (case 11). The results show that using four units (case D) achieves longer thermal comfort levels: 15 to 24 thermal hours during winter (compared to five hours maximum) and 10 to 19 comfort hours in summer (compared to zero).


2021 ◽  
Vol 16 (1) ◽  
pp. 139-161
Author(s):  
Shouib Mabdeh ◽  
Tamer Al Radaideh ◽  
Montaser Hiyari

ABSTRACT Thermal comfort has a great effect on occupants’ productivity and general well-being. Since people spend 80–90% of their time indoors, developing the tools and methods that help in enhancing the thermal comfort for buildings are worth investigating. Previous studies have proved that using passive systems like Trombe walls and solar chimneys significantly enhanced thermal comfort in inside spaces despite that each system has a specific purpose within a specific climate condition. Hence, the main purpose of this study is to design and configure a new dual functional passive system, called a solar wall. The new system combines the Trombe wall and solar chimney, and it can cool or heat based on building needs. Simulation software, DesignBuilder, has been used to configure the Solar Wall and study its impact on indoor operative temperature for the base case. Using the new system, the simulation results were compared with those obtained in the base case and analyzed to determine the most efficient system design parameters and implementation method. The case that gave the best results for solar wall configuration was triple glazed glass and 0.1 cm copper as an absorber (case 11). The results show that using four units (case D) achieves longer thermal comfort levels: 15 to 24 thermal hours during winter (compared to five hours maximum) and 10 to 19 comfort hours in summer (compared to zero).


2019 ◽  
Vol 3 (3) ◽  
pp. 31-40
Author(s):  
Ricardo Fabricio Muñoz Farfán ◽  
Telly Yarita Macías Zambrano ◽  
Vicente Paúl Zambrano Valencia ◽  
Victor Manuel Delgado Sosa

The design and construction of a cold production system from the ice water submitted by a mechanical direct expansion system contributing to the development of knowledge in the area of air conditioning were carried out. Among the technical design parameters, a direct expansion system with cooling capacity of 9000 BTU/Hrs, R134 refrigerant gas to a turbine for the work of the Fan Coil of ½ Hp of force 220 V was selected, as was the fan motor of the cooling tower as fundamental means for heat transfer. The recirculation pumping system is carried out by pumps of 0.37 kW of power and a maximum flow of 40 l/min. For both the evaporator sump (cold) and the condenser sump (hot). The work stage is given in two independent circuits, the Fan Coil system is connected to the evaporator sump and the cooling tower, in turn, is connected to the condensation system for proper operation and achieve condensation temperatures of 35 ° C and in case of having water requirements in the cold sump, the tower is connected by means of an electromagnetic valve for its supply.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5038
Author(s):  
Goopyo Hong ◽  
Chul Kim ◽  
Jun Hong

In commercial buildings, HVAC systems are becoming a primary driver of energy consumption, which already account for 45% of the total building energy consumption. In the previous literature, researchers have studied several energy conservation measures to reduce HVAC system energy consumption. One of the effective ways is an economizer in air-handling units. Therefore, this study quantified the impact of the outdoor air fraction by economizer control type in cooling system loads based on actual air-handling unit operation data in a hospital. The optimal outdoor air fraction and energy performance for economizer control types were calculated and analyzed. The result showed that economizer controls using optimal outdoor air fraction were up to 45% more efficient in cooling loads than existing HVAC operations in the hospital. The energy savings potential was 6–14% of the differential dry-bulb temperature control, 17–27% of the differential enthalpy control, 8–17% of the differential dry-bulb temperature and high-limit differential enthalpy control, and 16–27% of the differential enthalpy and high-limit differential dry-bulb temperature control compared to the no economizer control. The result of this study will contribute to providing a better understanding of economizer controls in the hospital when the building operates in hot-humid climate regions.


2013 ◽  
Vol 300-301 ◽  
pp. 1048-1053 ◽  
Author(s):  
Yong Hong Wang

In this paper, the test methods of radiation laboratory and data analysis in detail were introduced. The impact of the capillary system with different parameters changing, such as water temperature or water flow the capillary cooling capacity changes, and the capillary cooling system when the initial radiation response time were specificially studied. Under different parameters while cooling capillary volume changes associated with the indoor temperature can be seen under certain conditions, the capillary cooling capacity and room temperature has a linear relationship.


2018 ◽  
Vol 210 ◽  
pp. 04037
Author(s):  
Stanislav Sehnalek ◽  
Martin Kolacek

In this article is covered measurements of radiant cooling ceilings (RCC) in Laboratory of Environmental Engineering at Faculty of applied informatics under Tomas Bata University in Zlin. This laboratory performing standardized tests of special HVAC equipments. Article validate measurements on newly made customization of laboratory for measurements of such RCC. Measurement was performed on RCC with application of PCMs material. This RCC was specially developed for purposes of validation and made in two dimensions. Specific application of PCMs allows achieving recovery of accumulation media in multiple cycles during one day. Outline of newly made RCC is described followed up by detail of set-up of experiment. In article is estimate cooling capacity of used RCC with applied PCMs. Discontinuous cooling cycles is covered as well with description of measured data.


Sign in / Sign up

Export Citation Format

Share Document