The Method for Identification of Damping Coefficient of the Trucks Suspension

2013 ◽  
Vol 588 ◽  
pp. 281-289 ◽  
Author(s):  
Jan Warczek ◽  
Rafał Burdzik ◽  
Grzegorz Peruń

The modern commercial vehicle with a weight of more than 3,5 [Mg] is a complex design solution, which contains many of mechatronic systems. The standard equipment are the ability of the driver assistance systems such as ABS (Anti-Lock Braking System), ESP (Electronic Stability Program), ASR (Acceleration Slip Regulation). The technical condition of the modern car's suspension determines the value of the indicators of road safety. An essential element of the suspension system, whose function is to change the mechanical vibration energy into thermal energy, is the shock absorber. Incorrect functioning of shock absorbers affects the quality of the operation of these systems improve safety. In the case of gradually wears of shock absorber even an experienced driver is able to notice this phenomenon. For this reason it becomes necessary the need for regular technical condition monitoring of dampers. Diagnostic dampers on buses and trucks are limited to the organoleptic examination and propose based on intermediate symptoms such as accelerated tire wear. The paper describes the method for estimating the suspension damping characteristics of commercial vehicle in operating conditions.

2019 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Ольга Хрянина ◽  
Ol'ga Hryanina ◽  
Мария Колесникова ◽  
Maria Kolesnikova

The authors carried out the study of raw materials and their analysis, which allowed to identify the engineering-geological conditions of the construction site and outline the program of scientific and survey works. Full-scale and instrumental examination of the technical condition of the bearing and enclosing structures of the building. It is established that the building structures during operation have not received deformations that prevent normal operating conditions and are currently in satisfactory condition. The strength of concrete Foundation organoleptic and instrumental methods, which showed compliance with the design values. Analysis of verification calculations of the base, a satisfactory condition of the building structures showed that the structural solution of the coating can be changed and performed in kind without strengthening the existing foundations.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4008
Author(s):  
Błażej Doroszuk ◽  
Robert Król ◽  
Jarosław Wajs

This paper addresses the problem of conveyor transfer station design in harsh operating conditions, aiming to identify and eliminate a failure phenomenon which interrupts aggregate supply. The analyzed transfer station is located in a Polish granite quarry. The study employs laser scanning and reverse engineering methods to map the existing transfer station and its geometry. Next, a discrete element method (DEM) model of granite aggregate has been created and used for simulating current operating conditions. The arch formation has been identified as the main reason for breakdowns. Alternative design solutions for transfer stations were tested in DEM simulations. The most uncomplicated design for manufacturing incorporated an impact plate, and a straight chute has been selected as the best solution. The study also involved identifying areas of the new station most exposed to wear phenomena. A new transfer point was implemented in the quarry and resolved the problem of blockages.


2021 ◽  
Vol 75 (4) ◽  
pp. 3-12
Author(s):  
Zayats Yuriy Aleksandrovich ◽  
◽  
Zayats Tatiana Mikhailovna ◽  
Savelyev Maksim Anatolevich ◽  
◽  
...  

Logistics support of products at all stages of the life cycle is gaining increasing influence. This is facilitated by the increasing complexity of structures, a large number of elements, the intro-duction of mechatronic systems. Under these conditions, the relevance of developing methods for analyzing the design of samples increases. The developed model for analyzing the diesel cooling system is based on the principles of cognitive modeling. The practical significance of cognitive models is shown, which consists in the possibility of predicting changes in the influence of system elements on the target function in various operating conditions.


Author(s):  
A.V. Golenishev ◽  
A.V. Nadezkin ◽  
M.E. Starchenko

Рассматриваются подходы по определению пороговых значений концентрации продуктов износа в отработанном цилиндровом масле, характеризующие переход объекта диагностирования судового крейцкопфного дизеля из одного технического состояния в другое. Показано, что существующие методики не учитывают индивидуальные особенности и техническое состояние деталей цилиндропоршневой группы. Предложено для решения задачи их трибодиагностики использовать разработанную имитационную модель, позволяющую провести моделирование процесса изнашивания цилиндровой втулки и поршневых колец судового дизеля и на основании полученных расчетов определить концентрацию продуктов износа поступивших в отработанное цилиндровое масло при различной скорости изнашивания трущихся деталей. Данные о фактической концентрации продуктов износа в отработанном цилиндровом масле в дальнейшем соотносятся с результатами моделирования, что позволяет оценить техническое состояние деталей цилиндропоршневой группы двигателя. Представлены результаты моделирования по определению пороговых значений концентрации продуктов износа в отработанном цилиндровом масле, характеризующее переход судового дизеля из исправного в несправное техническое состояние. Даны практические рекомендации по выбору пороговых значений содержания продуктов износа в отработанном цилиндровом масле для различных типов судовых крейцкопфных дизелей и условий их эксплуатации.The article examines approaches to determine the threshold values of the concentration of wear debris in used cylinder oil that characterize the transition of a ship crosshead diesel engine unit under test from one technical condition to another. It is shown that the existing methods do not take into account the individual characteristics and technical condition of the parts of the cylinder-piston group. To solve the problem of tribodiagnostics, it is proposed to use the developed simulation model, which allows modeling the wear process of the cylinder bushing and piston rings of a marine diesel engine and, based on the obtained results, determining the concentration of wear products issued in the used cylinder oil at different wear rates of the moving parts. The data on the actual concentration of wear products in the used cylinder oil are subsequently correlated with the simulation model results, which makes it possible to evaluate the technical condition of the parts of the engine cylinder-piston group. The article presents the results of modeling of threshold values determination of the concentration of wear products in used cylinder oil, that measure the transition of a marine diesel engine from a working condition to a malfunctioning technical condition. Practical recommendations are given on choosing threshold values for the concentration of wear products in used cylinder oil for various types of marine crosshead diesel engines and their operating conditions.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-121
Author(s):  
Oleksandr Khrulev ◽  
◽  
Olexii Saraiev ◽  
Iryna Saraieva ◽  
◽  
...  

The analysis of the crankshaft bearing condition of the automotive internal combustion engines in the case of insufficiency and breakage of oil supply to them is carried out. It is noted that this fault is one of the most common causes of damage to rubbing pairs in operation. At the same time, the different groups of bearings are often damaged, which cannot be explained within the framework of existing models of plain bearing lubrication. The objective of the work is to develop a mathematical model of oil supply to connecting rod bearings in emergency mode, taking into account the characteristic features of the bearing design. The model also, depending on the nature of the damage, should help to determine and explain the causes of bearing failures if they occur in different modes when operating conditions are broken. A computational model has been developed that makes it possible to assess the effect of design differences in the features of oil supply and the action of the centrifugal forces during crankshaft rotation on the oil column in the lubrication hole where oil is supplied to the conrod bearing. Calculations of the change in time of the oil supply pressure to the connecting rod bearings for the various designs of the crankshaft lubrication holes have been performed. It is shown that, depending on the operating mode of the engine and its design, the oil pressure in front of the connecting rod bearings does not disappear immediately after oil supply failure to crankshaft. Moreover, the lower the crankshaft speed is, the longer the lubrication of the conrod bearings will continue. The calculation results are confirmed by the data of the expert studies of the engine technical condition, in which the crankshaft was wedged in the damaged main bearings was found in the absence of serious damage to the connecting rod ones. It has been found that such features of the damage correspond to an rapid breakage of the oil supply to the crankshaft in the case of such operational damage as the oil pump and pressure reducing valve failure, the oil filter seal and oil pan destruction, etc. The developed model explains the difference in lubrication conditions and in the damage feature to the main and connecting rod bearings in the emergency cases of the oil supply breakage, which are observed during operation, and helps to clarify the failure causes. This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines when the operating conditions are broken.


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 345-353
Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
A. N. Alimova

Determination of the main characteristics of the topology and technical condition of equipment underoperating conditions is necessary for analyzing and assessing power and electricity losses in intrashoplow-voltage industrial power supply networks. A comparative analysis of the technical characteristicsof automatic circuit breakers VA57-31 (KEAZ), NSX100 TM-D (Schneider Electric), DPX3 160 (Legrand), Tmax XT1 TMD (ABB) has shown that the main technical parameters of the machines are close in their values. At that it has been found out that automatic switches of the BA57-31 series have the lowest value of power losses per pole (7.5 W), whereas the automatic switches of the Tmax XT1 TMD series have the highest value (10 W). Thus, under the operating conditions of the equipment, the lowest value of power and electricity losses is characteristic of low-voltage electrical networks with installed circuit breakers of the BA57-31 series, and the highest value of losses is noted in in-shop systems with installed circuit breakers Tmax XT1 TMD. Using catalog data, the dependences of active power losses in circuit breakers on rated currents have been established; the algorithms have been developed and the obtained dependences have been modeled using approximating functions. The standard deviation of the compiled approximating functions has been calculated. Analytical expressions of the dynamics of power losses per pole have been determined as a function of the rated current. The graphical dependences of the investigated parameters of low-voltage equipment have been presented. The developed models are recommended to be used to increase the reliability of the assessment and refinement of the amount of active power and electricity losses in low-voltage electrical networks of industrial power supply systems, agrotechnical complexes, and enterprises of the public utility sector.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012003
Author(s):  
P Lonkwic ◽  
T Krakowski ◽  
H Ruta

Abstract The systems that monitor individual components of machines and devices are under constant development. The ability to detect damages at an early stage allows failures to be prevented, so any uncontrolled downtime can be predicted in a controlled manner. Continuous monitoring of technical condition is an activity that also helps to reduce the losses due to equipment failures. However, not all areas can be monitored continuously. Such areas include lift guides where wear and tear can occur naturally, i.e. through abrasion of the material layer due to interaction with moving guide shoes or after emergency braking. Emergency braking causes local damages to the guide through plastic deformation of its surface resulting from indentation of the knurled roller of the brake. Such places are cleaned mechanically, which results in local reduction of the cross-sectional area. In such a case, it is difficult to continuously assess the technical condition of guides due to the prevailing operating conditions. Therefore, a concept of a head enabling assessment of the technical condition of guides at every stage of their operation has been developed. This article presents the novel concept of a magnetic head used for assessing the technical condition of lift guide rails that are the running track of lifting equipment. The initial tests were performed on the original test setup. The concept of the developed measuring head was verified for correct operation on specially prepared flat bars with holes. The results obtained in the form of laboratory tests proved that the proposed measuring head concept can be applied to the measurements under real conditions.


2018 ◽  
Vol 182 ◽  
pp. 01027
Author(s):  
Jan Monieta

The intensity of infrared radiation emitted by objects depends mainly on their temperature. One of the diagnostic signals may be the temperature field. In infrared thermography, this quantity is used as an indicator of the technical condition of marine objects. The article presents an overview of the use of infrared thermography for the diagnosis mainly of marine piston floating objects and various types of reciprocating internal combustion engines as well as examples of own research results. A general introduction to infrared thermography and common procedures for temperature measurement and non-destructive testing are presented. Experimental research was carried out both in laboratory conditions and in the operating conditions of sea-going vessels. Experimental studies consisted of the presentation of photographs of the same objects made in visible light and the use of infrared thermography. The same objects were also compared, but for different cylinders of the tested internal combustion engines as well as for the up state and fault state. The characteristics of the temperature values at selected points were taken depending on the engine load along with the approximation mathematical models of these dependencies.


Author(s):  
Emil A. Maschner ◽  
Basel Abdalla

The subject of lateral buckling design in recent years has by necessity become increasingly more involved as pipeline projects have moved into more difficult environments where there is a need for optimized economic solutions with assured through-life reliability. The authors have had direct design responsibility and specialist involvement with a large number of projects covering a diverse range of environments, single or PIP systems, variable product characteristics and operating conditions, external applied loading type, and geographical installation limitations. These include shallow and deep water, large thin walled and small thick walled diameter pipes, flat to undulating hard to soft seabed, variable cohesive and non-cohesive surficial soil types and various other project considerations which have impacted on the chosen design solution. The purpose of this paper will be to highlight aspects of global buckling design associated with reliable in place systems and conversely those aspects associated with integrity risks to the as-laid operational pipelines. A review of past project challenges along with a commentary as to the state of the art at the time gives an opportunity to evaluate risks and challenges being faced on current projects. Particularly, as it seeks to develop ever more cost effective designs with proven robustness but optimized safety margins for the installation and operation of HT/HP pipelines in marginal fields.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4429
Author(s):  
Yury Nikitin ◽  
Pavol Božek ◽  
Jozef Peterka

The presented paper scientifically discusses the progressive diagnostics of electrical drives in robots with sensor support. The AI (artificial intelligence) model proposed by the authors contains the technical conditions of fuzzy inference rule descriptions for the identification of a robot drive’s technical condition and a source for the description of linguistic variables. The parameter of drive diagnostics for a robotized workplace that is proposed here is original and composed of the sum of vibration acceleration amplitudes ranging from a frequency of 6.3 Hz to 1250 Hz of a one-third-octave filter. Models of systems for the diagnostics of mechatronic objects in the robotized workplace are developed based on examples of CNC (Computer Numerical Control) machine diagnostics and mechatronic modules based on the fuzzy inference system, concluding with a solved example of the multi-criteria optimization of diagnostic systems. Algorithms for CNC machine diagnostics are implemented and intended only for research into precisely determined procedures for monitoring the lifetime of the mentioned mechatronic systems. Sensors for measuring the diagnostic parameters of CNC machines according to precisely determined measuring chains, together with schemes of hardware diagnostics for mechatronic systems are proposed.


Sign in / Sign up

Export Citation Format

Share Document