Fabrication of Comb Shape of Leading Edge Wing of Dragonfly

2014 ◽  
Vol 625 ◽  
pp. 182-186 ◽  
Author(s):  
Shinjiro Umezu ◽  
Naoyuki Tanabe ◽  
Hiromu Hashimoto

Research on Micro air vehicle (MAV) has been carried out by many researchers to gather information in environmental monitoring, security and so on. When the earthquake, fire, smoke take place, it is difficult for human beings to investigate the detail because of dangerous condition. However, MAV has possibility to investigate the detail because MAV can fly freely around. Recently, dragonfly is highly focused by many researchers because dragonfly has high flight performances those are high efficiency flight, unintended acceleration, rapid turn and hovering. In general, these characteristics have root that wing is corrugation shape. We focus on microstructures on wing and its aerodynamic characteristics because there are many unique microstructures. We focused on micro spikes on dragonfly wing. Over three thousands of spikes exist on two sides of wing. The length and shape of spikes are 10 to 100 micron meters and oblique circular cone. It is important to clear the aerodynamic effect of the oblique circular cone. Artificial wing was fabricated by following processes. We fabricated micro spikes utilizing electro polishing. Fabricated micro spikes were set on plate utilizing micro spot bonding. We investigated the flow around the artificial wing and found that the flow around wing was controlled by micro spikes on wing. In this paper, we focused on comb shape of leading edge of wing. Comb shape is fabricated utilizing micro-EDM. We investigate flow characteristics of comb shape.

2017 ◽  
Vol 813 ◽  
pp. 23-52 ◽  
Author(s):  
Rafael Pérez-Torró ◽  
Jae Wook Kim

A numerical investigation on the stalled flow characteristics of a NACA0021 aerofoil with a sinusoidal wavy leading edge (WLE) at chord-based Reynolds number $Re_{\infty }=1.2\times 10^{5}$ and angle of attack $\unicode[STIX]{x1D6FC}=20^{\circ }$ is presented in this paper. It is observed that laminar separation bubbles (LSBs) form at the trough areas of the WLE in a collocated fashion rather than uniformly/periodically distributed over the span. It is found that the distribution of LSBs and their influence on the aerodynamic forces is strongly dependent on the spanwise domain size of the simulation, i.e. the wavenumber of the WLE used. The creation of a pair of counter-rotating streamwise vortices from the WLE and their evolution as an interface/buffer between the LSBs and the adjacent fully separated shear layers are discussed in detail. The current simulation results confirm that an increased lift and a decreased drag are achieved by using the WLEs compared to the straight leading edge (SLE) case, as observed in previous experiments. Additionally, the WLE cases exhibit a significantly reduced level of unsteady fluctuations in aerodynamic forces at the frequency of periodic vortex shedding. The beneficial aerodynamic characteristics of the WLE cases are attributed to the following three major events observed in the current simulations: (i) the appearance of a large low-pressure zone near the leading edge created by the LSBs; (ii) the reattachment of flow behind the LSBs resulting in a decreased volume of the rear wake; and, (iii) the deterioration of von-Kármán (periodic) vortex shedding due to the breakdown of spanwise coherent structures.


2014 ◽  
Vol 540 ◽  
pp. 138-142 ◽  
Author(s):  
Yong Hong Li ◽  
Yong Huang ◽  
Ji Chuan Su

Previous wind tunnel study has found that the lift slope of a common research model with flying-wing configuration in a transonic freestream can experience a sudden drop as the angle of attack is increased. A numerical investigation of aerodynamic characteristics of the flying-wing configuration in transonic speed flow is presented with the intend to examine the changes of the flow characteristics in detail. As can been seen from the analysis, at sufficiently high angles of attack the dominant feature of flows over the leeside of the configuration is a pair of counter-rotating vortices. Solving the steady Reynolds-Averaged Navier-Stokes equations , the flow structures were exhibited in different angles and the analysis of total pressure, static pressure and axial velocity through wing vortex cores were presented in order to analyze the flow characteristics for the develop of the vortex. The investigation shows that the numerical method is accurate enough to capture the features of the flow especially the formation and breakdown of the leading-edge vortices. The rapid expansion of the vortex core and adverse pressure gradient the flow encounters in the chordwise direction affect the aerodynamic performance severely.


Author(s):  
Tadateru Ishide ◽  
Kazuya Naganuma ◽  
Shinsuke Seiji ◽  
Hiroyuki Ishikawa ◽  
Ryo Fujii ◽  
...  

Recently, various studies of Micro Air Vehicle (MAV) and Unmanned Air Vehicle (UAV) have been reported from wide range points of view. The aim of this study are researching the aerodynamic improvement of delta wing and flapping wing in low Reynold’s number region to develop an applicative these air vehicle. Various configurations of Leading Edge Flap (LEF) are used to enhance the aerodynamic characteristics in the delta wing. The six kind of elliptical wings made of stainless steel are used in the flapping wing. The effects of flapping amplitude and wing configuration regarding the aerodynamic characteristics are investigated in detail. The fluid force measurement by six component load cell and PIV analysis are performed as the experimental method. In the flapping wing experiment, the simultaneous measuring of the fluid force measurement and PIV analysis is tried by using the trigger signal from the encoder attached to the flapping model. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.


1996 ◽  
Vol 199 (2) ◽  
pp. 281-294 ◽  
Author(s):  
M Okamoto ◽  
K Yasuda ◽  
A Azuma

The aerodynamic characteristics of the wings and body of a dragonfly and of artificial wing models were studied by conducting two types of wind-tunnel tests and a number of free-flight tests of gliders made using dragonfly wings. The results were consistent between these different tests. The effects of camber, thickness, sharpness of the leading edge and surface roughness on the aerodynamic characteristics of the wings were characterized in the flow field with Reynolds numbers (Re) as low as 103 to 104.


Author(s):  
V. T. Gopinathan ◽  
J. Bruce Ralphin Rose

The aerodynamic behavior of sweptback wing configurations with bio-inspired humpback whale (HW) leading-edge (LE) tubercles has been investigated through computational and experimental techniques. Specifically, the aerodynamic performance of tubercled wings with symmetric (NACA 0015) and cambered (NACA 4415) airfoils is validated against the baseline model at various angles of attack ([Formula: see text]. The [Formula: see text]/[Formula: see text] ratio of the HW flipper is strategically reduced to 0.15 for ascertaining the flow control potential of the bio-inspired wings with sweptback configuration. It is a novel effort to quantify the effect of the leading-edge protuberances on stall delay, flow separation control and distribution of streamline vortices at unique [Formula: see text]/[Formula: see text] ratio outside the thickness range of HW flipper morphology. Four tapered sweptback wing models (Baseline A, Baseline B, HUMP 0015, HUMP 4415) are used with the amplitude-to-wavelength ([Formula: see text] ratio of 0.24 and Reynolds number about [Formula: see text]. The chordwise pressure distributions are recorded at the peak, mid and trough regions of the tubercled wings through a detailed wind tunnel testing and validated with numerical analysis. Additionally, the flow characteristics over the bio-inspired surfaces have been qualitatively analyzed through the laser flow visualization (LFV) technique to reveal the influence of laminar separation bubbles (LSBs). The essential aerodynamic characteristics such as boundary layer trip delay, vortex mixing, stall delay, and flow control at different AoA are addressed through consistent experimental data. As the sweptback configuration is a primary choice for airplane wings, the improved aerodynamic characteristics of the tubercled wings can be effectively utilized for the design of novel lifting surfaces, hydroplanes and wind turbines in the near future.


Author(s):  
Chen-Jing Sun ◽  
Li-Ping Zhao ◽  
Rui Wang

: With the development of industrialization, the global environmental pollution and energy crisis are becoming increasingly serious. Organic pollutants pose a serious health threat to human beings and other organisms. The removal of organic pollutants in environment has become a global challenge. The photocatalytic technology has been widely used in the degradation of organic pollutants with its characteristics of simple process, high efficiency, thorough degradation and no secondary pollution. However, the single photocatalyst represented by TiO2 has disadvantages of low light utilization rate and high recombination rate of photocarriers. Building heterojunction is considered one of the most effective methods to enhance the photocatalytic performance of single photocatalyst, which can improve the separation efficiency of photocarriers and utilization of visible light. The classical heterojunction can be divided into four different cases: type I, typeⅡ, p–n heterojunctions and Z-scheme junction. In this paper, the recent progress in the treatment of organic pollution by heterostructure photocatalysts is summarized and the mechanism of heterostructure photocatalysts for the treatment of organic pollutants is reviewed. It is expected that this paper can deepen the understanding of heterostructure photocatalysts and provide guidance for high efficient photocatalytic degradation of organic pollutants in the future.


Author(s):  
Jie Gao ◽  
Chunde Tao ◽  
Dongchen Huo ◽  
Guojie Wang

Marine, industrial, turboprop and turboshaft gas turbine engines use nonaxisymmetric exhaust volutes for flow diffusion and pressure recovery. These processes result in a three-dimensional complex turbulent flow in the exhaust volute. The flows in the axial turbine and nonaxisymmetric exhaust volute are closely coupled and inherently unsteady, and they have a great influence on the turbine and exhaust aerodynamic characteristics. Therefore, it is very necessary to carry out research on coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics, so as to provide reference for the high-efficiency turbine-volute designs. This paper summarizes and analyzes the recent advances in the field of coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics for turbomachinery. This review covers the following topics that are important for turbine and volute coupled designs: (1) flow and loss characteristics of nonaxisymmetric exhaust volutes, (2) flow interactions between axial turbine and nonaxisymmetric exhaust volute, (3) improvement of turbine and volute performance within spatial limitations and (4) research methods of coupled turbine and exhaust volute aerodynamics. The emphasis is placed on the turbine-volute interactions and performance improvement. We also present our own insights regarding the current research trends and the prospects for future developments.


2021 ◽  
pp. 1-21
Author(s):  
Z. Hao ◽  
X. Yang ◽  
Z. Feng

Abstract Particulate deposits in aero-engine turbines change the profile of blades, increase the blade surface roughness and block internal cooling channels and film cooling holes, which generally leads to the degradation of aerodynamic and cooling performance. To reveal particle deposition effects in the turbine, unsteady simulations were performed by investigating the migration patterns and deposition characteristics of the particle contaminant in a one-stage, high-pressure turbine of an aero-engine. Two typical operating conditions of the aero-engine, i.e. high-temperature take-off and economic cruise, were discussed, and the effects of particle size on the migration and deposition of fly-ash particles were demonstrated. A critical velocity model was applied to predict particle deposition. Comparisons between the stator and rotor were made by presenting the concentration and trajectory of the particles and the resulting deposition patterns on the aerofoil surfaces. Results show that the migration and deposition of the particles in the stator passage is dominated by the flow characteristics of fluid and the property of particles. In the subsequential rotor passage, in addition to these factors, particles are also affected by the stator–rotor interaction and the interference between rotors. With higher inlet temperature and larger diameter of the particle, the quantity of deposits increases and the deposition is distributed mainly on the Pressure Side (PS) and the Leading Edge (LE) of the aerofoil.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
B. Glezer

Heat transfer and fluid mechanics results are given for a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. The Reynolds numbers investigated, based on inlet duct characteristics, include values which are the same as in the application (18000–19400). The ratio of absolute air temperature between the inlet and wall of the swirl chamber ranges from 0.62 to 0.86 for the heat transfer measurements. Spatial variations of surface Nusselt numbers along swirl chamber surfaces are measured using infrared thermography in conjunction with thermocouples, energy balances, digital image processing, and in situ calibration procedures. The structure and streamwise development of arrays of Görtler vortex pairs, which develop along concave surfaces, are apparent from flow visualizations. Overall swirl chamber structure is also described from time-averaged surveys of the circumferential component of velocity, total pressure, static pressure, and the circumferential component of vorticity. Important variations of surface Nusselt numbers and time-averaged flow characteristics are present due to arrays of Görtler vortex pairs, especially near each of the two inlets, where Nusselt numbers are highest. Nusselt numbers then decrease and become more spatially uniform along the interior surface of the chamber as the flows advect away from each inlet.


Sign in / Sign up

Export Citation Format

Share Document