Technological Exercise of Cell Structure Forming

2017 ◽  
Vol 736 ◽  
pp. 122-126 ◽  
Author(s):  
S.N. Larin ◽  
V.I. Platonov ◽  
G.A. Nuzgdin

Single-layer and multi-layer cell structures are used for manufacturing of shells of liquid fuel tankers, as well as of "dry" shells of products, wings, fairings, etc. However, conventional methods of production by means of milling do not allow achieving the required specific strength. In this connection, diffusion bonding by means of gas pressure and gas forming at specified temperature and speed conditions are extremely important. Studies conducted by authors help model the processes and calculate the necessary processing parameters: pressure, critical strain rate, deformation rate (deformation time). This paper describes the manufacturing technology for these products, in which the solutions are based on theoretical and experimental studies, which provide: an increase in specific strength; reduction in weight of the product; reduction of labor intensity and increase in material utilization factor.

Author(s):  
Liubov Magerramova ◽  
Michael Volkov ◽  
Oleg Volgin ◽  
Pavel Kolos

Abstract The use of cellular structures is one way to reduce the weight of engine parts. Cellular structures are used to provide rigidity and strength for parts subject to compression, bending, and shock loads. Failure of the individual elements of a lattice/cell structure does not result in the destruction of the entire part; this stands in contrast to the structure of a conventional homogeneous metal object, in which cracks will continue to increase with increasing load, causing the destruction of the entire part. Lattice/cell structures have relatively high characteristics of rigidity and strength, excellent thermal insulation properties, energy absorption characteristics, and high fatigue resistance. The use of this type of structure in engine part construction opens up new opportunities for advanced aviation applications. However, the deformation behavior of porous and metallic structures differs significantly from that of conventional homogeneous materials. Samples with cellular and porous structures are themselves designs. Therefore, procedures for strength testing and interpretation of experimental results for cellular and porous structures differ from those for samples derived from homogeneous materials. The criteria for determining the properties of cellular structures include density, stiffness, ability to accumulate energy, etc. These parameters depend on the configuration of the cells, the size of each cell, and the thickness of the connecting elements. Mechanical properties of cellular structures can be established experimentally and confirmed numerically. Special cellular specimens have been designed for uniaxial tensile, bending, compression, shear, and low-cycle fatigue testing. Several variants of cell structures with relative densities ranging from 13 to 45% were considered. Specifically, the present study examined the stress-strain states of cell structures from brands “CobaltChrome MP1” powder compositions obtained by laser synthesis on an industrial 3D printer Concept Laser M2 Cusing Single Laser 400W. Numerical simulations of the tests were carried out by the finite element method. Then, the most rational cellular structures in terms of mass and strength were established on the basis of both real and numerical experiments.


2017 ◽  
Vol 21 (8) ◽  
pp. 2680-2699 ◽  
Author(s):  
Jonas Grünewald ◽  
Patricia P Parlevliet ◽  
Alexander Matschinski ◽  
Volker Altstädt

Previous work showed that thermoplastic composite sandwich structures offer great potential to meet the demands of lightweight structures for aviation applications. In this study, the influence of several processing parameters on the mechanical properties of thermoplastic sandwich components, consisting of carbon fibre reinforced polyetheretherketone skins and polyetherimide foam cores, is characterised. Sandwich specimens are manufactured with varying skin temperatures, core compaction distances and different polyetherimide concentrations at the skin–core interface. Following, sandwich samples are mechanically tested to characterise the bond strength, the core performance as well as the performance of the whole sandwich. The results show that in most cases the processing parameters significantly affect the cell structure of the sandwich core, provided that a proper fusion bond between skins and core exists. Thereby, the core performance seems to be weakened and failure predominantly occurs in the transition between affected and original cell structures.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Akira Kojima

Charles Kittel has written a masterpiece book, “Introduction to Solid State Physics” (ISSP). He mentions in the chapter on ferroelectrics in detail that barium titanate is the typical displacive-type ferroelectric compound where the Ti4+ displacement develops a dipole moment, which has made a deep impression in our mind. The author’s group, however, has arrived at an alternative viewpoint on the unit cell structure of barium titanate based on their exhaustive experimental studies. Accordingly, the author sent his relevant papers in 2006 and 2007 to Kittel. He endorsed the results frankly with reminiscence. He mentioned revising the ferroelectric chapter of ISSP according the author’s suggestions. It appears to be admissible to publish details now after Kittel has passed away. A long time misunderstanding of the phase transition in barium titanate is due to the text book knowledge of ISSP.


2016 ◽  
Vol 61 (1) ◽  
pp. 149-152 ◽  
Author(s):  
L.W. Żukowska ◽  
A. Śliwa ◽  
J. Mikuła ◽  
M. Bonek ◽  
W. Kwaśny ◽  
...  

The general topic of this paper is the computer simulation with use of finite element method (FEM) for determining the internal stresses of selected gradient and single-layer PVD coatings deposited on the sintered tool materials, including cemented carbides, cermets and Al2O3+TiC type oxide tool ceramics by cathodic arc evaporation CAE-PVD method. Developing an appropriate model allows the prediction of properties of PVD coatings, which are also the criterion of their selection for specific items, based on the parameters of technological processes. In addition, developed model can to a large extent eliminate the need for expensive and time-consuming experimental studies for the computer simulation. Developed models of internal stresses were performed with use of finite element method in ANSYS environment. The experimental values of stresses were calculated using the X-ray sin2ψ technique. The computer simulation results were compared with the experimental results. Microhardness and adhesion as well as wear range were measured to investigate the influence of stress distribution on the mechanical and functional properties of coatings. It was stated that occurrence of compressive stresses on the surface of gradient coating has advantageous influence on their mechanical properties, especially on microhardness. Absolute value reduction of internal stresses in the connection zone in case of the gradient coatings takes profitably effects on improvement the adhesion of coatings. It can be one of the most important reasons of increase the wear resistance of gradient coatings in comparison to single-layer coatings.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 66 ◽  
Author(s):  
R Roopa ◽  
P Navin Karanth ◽  
S M. Kulkarni

This study reports the performance of piezo actuated compliant flexure diaphragm for micropump and MEMS application. To achieve the high performance of diaphragm at the low operating voltage compliant flexure diaphragm design is introduced. Very limited work has done on the diaphragms of micropump. Large numbers of mechanical micropumps have used plane diaphragms. The central deflection of diaphragm plays an important role in defining the micropump performance. The flow rate of mechanical type micropump strongly depends on the central deflection of diaphragm. In this paper compliant flexure diaphragms are designed for micropump to achieve higher deflection at lower operating voltage. Finite element analysis of compliant flexure diaphragm with single layer PVDF (Polyvinylidene fluoride) actuator is simulated in COMSOL. Compliant flexure diaphragms with a different number of flexures are analyzed. The central deflection of compliant flexure diaphragms is measured for driving voltages of 90V to 140V in 10 steps. The deflection of the compliant flexure diaphragm mainly depends on flexure width and length, the number of flexures in the diaphragm, PVDF thickness, diaphragm thickness and driving voltage. Use of compliant flexure diaphragm for micropump will reduce the mass and driving voltage of micropump. An attempt is made to compare the results of compliant flexure diaphragms with plane diaphragms. From the experimental results it is noticed that the compliant flexure diaphragm deflection is twice that of the plane diaphragm at same driving voltage. Deflection of three flexure and four flexure compliant diaphragms is 10.5µm and 11.5µm respectively at 140V.  


2020 ◽  
Vol 14 (2) ◽  
pp. 117-124
Author(s):  
Bayu Rahmat Saputro ◽  
Amin Suhadi

Abstract A research was conducted on the grinding process of ferrite magnet with Strontium ferrite type (SrO.6 (Fe2O3)) using electroplated single layer grinding wheels. Many cracks have been found on work pieces during this work, which is coming from grinding processes. Research is conducted starting from chemical composition test and the effect of the shape and size of the abrasive grain of grinding wheels to the quality of grinding process results by measuring crack ratio of the work piece.  In this experiment, 3 (three) model design of grinding wheels with three different size and shape of abrasive grains are made. All of processing parameters are set at the same value as ordinary process.  The experimental results shown that 3rd model have the best results from the outputs number and also the lowest reject crack ratio compared to 1st and 2nd models. This is because the 3rd model has blocky shape which its distribution structure is denser and more uniform compared to the irregular shape, so that continuous grinding on hard and brittle work pieces is more stable and suitable


2000 ◽  
Vol 612 ◽  
Author(s):  
S.P. Hau-Riege ◽  
C.V. Thompson

AbstractThe electromigration resistance of simple straight-line interconnects is usually used to estimate the reliability of complex integrated circuits. This is generally inaccurate, and overly conservative at best. The shapes and connectedness of interconnects is not accounted for in standard reliability assessments. We have identified the interconnect tree as the fundamental reliability unit. An interconnect tree consists of connected conducting line segments lying within a single layer of metallization, and terminating at two or more nodes at which there is a diffusion barrier such as a W-filled via. We performed electromigration experiments on the simplest tree structures, such as ‘L’- and ‘T’-shaped interconnects, as well as straight lines with an additional via in the middle of the line, passing currents of different magnitudes and directions through the limbs of the trees. We found that metal limbs ending in other limbs can act as reservoirs for electromigrating metal atoms. Passive reservoirs, which are limbs that do not carry electrical current, are generally beneficial for reliability, whereas limbs that do carry electrical current, called active reservoirs, can be beneficial or detrimental, depending on the direction and magnitude of the current in the reservoir. However, our experiments show that bends in interconnects do not affect their reliability significantly. We also found that the reliability of an interconnect tree can be conservatively estimated by considering void-growth and void-nucleation-limited failures at the most heavily stressed junction in the tree, which can be found by analyzing the geometry and current configuration. Our experimentally verified model for tree reliability can be used with layout tools for reliability-driven computer-aided design (RCAD), through ranking of the reliabilities of trees in order to identify areas at risk from electromigration damage.


2020 ◽  
Vol 326 ◽  
pp. 03005
Author(s):  
Sazol Das ◽  
Matthew Heyen ◽  
John Ho ◽  
ChangOok Son

AA5xxx series Al-Mg alloys possess good combination of high specific strength-to-weight ratio, formability and corrosion resistance, which makes them attractive to the automakers for their light weighting needs. Increasingly the automakers are demanding sustainable materials. Developing aluminum alloys with increased recycled content is becoming imperative. However, increasing the recycled content can negatively impact the overall formability and joinability of the alloy. Formability is important in the shaping of complex parts and it is a key requirement in automotive manufacturing. Similarly, the other key requirement for automotive sheet is joinability. Self-piercing riveting (SPR) technology is increasingly being used for joining. In this study, the process optimization of high recycle content AA5754 alloy’s for formability and rivetability will be discussed. Controlling the annealing heat treatment to produce optimum combination of grain size along with balanced recrystallized and rolling texture to improve the SPR joint configuration will be presented.


2020 ◽  
pp. 026248932093032
Author(s):  
Jinwei Chen ◽  
Ling Yang ◽  
Dahua Chen ◽  
Qunshan Mai ◽  
Meigui Wang ◽  
...  

Microcellular polylactic acid (PLA) foams with various cell size and cell morphologies were prepared using supercritical carbon dioxide (sc-CO2) solid-state foaming to investigate the relationship between the cell structure and mechanical properties. Constrained foaming was used and a wide range of cell structures with a constant porosity of ∼75% by tuning saturation pressure (8–24 MPa) was developed. Experiments varying the saturation pressure while holding other variables’ constant show that the mean cell size and the mean cell wall thickness decreased, while the cell density and the open porosity increased with increase of pressure. Tensile modulus of PLA foams decreased with increasing the saturation pressure, but the specific tensile modulus of PLA foams was still 15–80% higher than that of solid PLA. Tensile strength and elongation at break first increased with increasing saturation pressure up to 16 MPa and then decreased with further increasing saturation pressure (20 MPa and 24 MPa) at which opened-cell structure produced. Compressive modulus, compressive strength, and compressive yield stress also followed the same variation trend. The results indicated that not only cell size plays an important role in properties of PLA foams but also cell morphology can influence these properties significantly.


Author(s):  
Liubov Magerramova ◽  
Michael Volkov ◽  
Oleg Volgin ◽  
Pavel Kolos

Abstract Lattice/cell structures have relatively high characteristics of rigidity and strength, excellent thermal insulation properties, energy absorption characteristics, and high fatigue resistance. The use of this type of structure in engine part construction opens up new opportunities for advanced aviation applications. However, the deformation behavior of porous and metallic structures differs significantly from that of conventional homogeneous materials. Samples with cellular and porous structures are themselves designs. Therefore, procedures for strength testing and interpretation of experimental results for cellular and porous structures differ from those for samples derived from homogeneous materials. The criteria for determining the properties of cellular structures include density, stiffness, ability to accumulate energy, etc. These parameters depend on the configuration of the cells, the size of each cell, and the thickness of the connecting elements. Mechanical properties of cellular structures can be established experimentally and confirmed numerically. Special cellular specimens have been designed for uniaxial tensile, bending, compression, shear, and low-cycle fatigue testing. Several variants of cell structures with relative densities ranging from 13 to 45% were considered. Specifically, the present study examined the stress-strain states of cell structures from brands "CobaltChrome MP1" powder compositions obtained by laser synthesis on an industrial 3D printer Concept Laser M2 Cusing Single Laser 400W. Numerical simulations of the tests were carried out by the finite element method. Then, the most rational cellular structures in terms of mass and strength were established on the basis of both real and numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document