Mechanical and Wear Behavior of Al7075 - Graphite Self-Lubricating Composite Reinforced by Nano-WO3 Particles

2020 ◽  
Vol 1002 ◽  
pp. 151-160 ◽  
Author(s):  
Anmar D. Mahdi ◽  
Saif S. Irhayyim ◽  
Salah F. Abduljabbar

Al7075 hybrid nanocomposites considered one of the most material utilized in modern engineering applications that required a combination of superior properties such as lightweight, high strength, excellent corrosion resistance, and high thermal conductivity. In the current study, Al7075 – 5 vol % graphite self-lubricating composite was reinforced by 0, 1.5, 2.5, 3.5, and 4.5 vol % WO3 nanoparticles in order to study the microstructural, mechanical, and wear characteristics. The classical powder metallurgy route was employed to fabricate the hybrid nanocomposites specimens. The microstructural analysis of the nanocomposites was characterized by utilizing a Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive X-ray (EDX) analyses. Mechanical properties such as micro-hardness and diametral compressive strength were studied. Dry sliding wear test was performed under the various loads of 10, 15, 20, and 25 N at a sliding distance and sliding speed of 1810 m and 1.5 m/s, respectively. Results have revealed that the microhardness and diametral compressive strength considerably improved by increasing the WO3 content until 3.5 vol % and then slightly decreased. Besides, both the values of the wear rate and friction coefficient gradually reduced by increment the reinforcement content up to 3.5 vol % and then suddenly increases for all the applied loads. Nevertheless, the wear rate and friction coefficient were correlated positively with the applied loads. From the results obtained, graphite as solid lubricating material with WO3 nanoparticles was successfully combined into the Al7075 alloy matrix. The optimum mechanical and wear performance of the hybrid nanocomposite were revealed at 3.5 vol % content of WO3 nanoparticles.

2018 ◽  
Vol 55 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Marian Bastiurea ◽  
Dumitru Dima ◽  
Gabriel Andrei

Graphene oxide and graphite filled polyester composites were prepared by using conventional melt-mixing methods in order to improve tribological performance of polyester. It was investigated friction stability, microhardness, friction coefficient, and specific wear rate of the composites in details. It was found that the presence of graphite and graphene oxide influenced friction coefficient and wear rate of the composites. Graphene oxide decreased wear rate with increasing of test speed and graphite decreased wear rate for composite for all speeds. Tribological performance of the polyester/graphene composites is mainly attributed to bigger thermal conductivity for graphene, which can easily dissipate the heat which appears during the friction process at bigger forces. The positive influence of graphite on coefficient of friction (COF) of the composites is the result of the clivage of graphite layers during the loadings due to van der Waals weak bonds between the graphite layers.


2016 ◽  
Vol 35 (5) ◽  
pp. 487-492
Author(s):  
Ahmet Karaaslan ◽  
Alptekin Kısasöz ◽  
Ş. Hakan Atapek ◽  
Kerem Altuğ Güler

AbstractThe wear behavior of cast A7075 and A7075/SAF 2205 composite material fabricated by vacuum-assisted investment flask casting was investigated under dry sliding condition. The wear tests were carried out using a “ball-on-disc” type tribometer. In the wear tests, 100Cr6 and ZrO2 balls were used as counterparts and the load, total distance and rotating speed were selected as 10 N, 100 m and 100 rpm, respectively. The results were evaluated using the friction coefficient–distance diagram, weight loss and wear rate. All worn surfaces were examined by scanning electron microscope and wear characteristics of the materials were discussed as a function of the microstructural features. It was concluded that composite material had lower friction coefficient, less weight loss and slower wear rate than that of cast material.


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


2019 ◽  
Vol 895 ◽  
pp. 200-205
Author(s):  
B.S. Kanthraju ◽  
Bheemappa Suresha ◽  
H.M. Somashekar

This paper presents the effect of zirconia filler on mechanical properties and dry sliding wear of bidirectional hybrid (glass and basalt fiber) fabric reinforced epoxy (G-B/E) composites. Fabrication was done by hand layup method followed by compression molding. The effect of zirconia filler loading on mechanical characteristics like hardness, tensile and flexure of fabricated G-B/E composites were determined according to ASTM standards. Also, wear behavior under dry sliding condition was performed using pin-on-disc machine for different applied normal loads/sliding distance. Experimental results reveal that incorporation of zirconia filler improves the mechanical properties. Further, the wear test results indicated addition of zirconia into G-B/E hybrid fiber composites plays important role on specific wear rate under the tribo-conditions selected for the study. Further, inclusion of zirconia into G-B/E composites shows improved wear resistance and addition of 6 wt. % of zirconia exhibits least specific wear rate compared to other hybrid G-B/E composites. In addition, Scanning electron microscope images of selected mechanical test fractured coupons also have been discussed.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 590
Author(s):  
Seonghoon Kim ◽  
Taewoo Kim ◽  
Eunpyo Hong ◽  
Ilguk Jo ◽  
Jaeyoung Kim ◽  
...  

Carbon-doped TiZrN nanocomposite coatings were investigated for phase formation and wear behavior. They were prepared by laser carburization using carbon paste, and the thermal energy of the pulsed laser was limited to the range of 20 to 50%. X-ray photoelectron spectroscopy analysis revealed that the ratio of carbide (TiC, ZrC) increased as the thermal energy of the laser increased. The sp2/sp3 ratio increased by approximately 16% when the laser thermal energy was raised from 30 to 40%, and the formation of amorphous carbon was confirmed in the carbon-doped TiZrN coatings. As a result of microstructural analysis, the carbon-doped TiZrN nanocomposite was formed by an increase of hybrid bonds in expanded localized carbon clusters. Wear resistance was evaluated using a ball-on-disc tester, which showed that the friction coefficient decreased from 0.74 to 0.11 and the wear rate decreased from 7.63 × 10−6 mm3 (Nm)−1 to 1.26 × 10−6 mm3 (Nm)−1. In particular, the friction coefficient and wear rate improved by 71 and 66%, respectively, owing to the formation of carbon-doped TiZrN nanocomposite with amorphous carbon while the thermal energy was increased from 30 to 40%.


2015 ◽  
Vol 817 ◽  
pp. 661-666 ◽  
Author(s):  
Yuan Gao ◽  
Jin Chuan Jie ◽  
Peng Chao Zhang ◽  
Jian Zhang ◽  
Tong Min Wang ◽  
...  

The dry sliding wear behavior of Cu-Cr-Zr alloy prepared by electromagnetic horizontal continuous casting was investigated. The wear behavior of the studied alloy was discussed in terms of friction coefficient, mass loss/sliding, specific wear rate and wear mechanism. The results indicate that with the increasing normal load and sliding velocity, the friction coefficient of Cu-Cr-Zr alloy decreased monotonically, the mass loss/sliding and specific wear rate increased. By wear surface morphology and composition analysis, the wear mechanisms were discussed preliminary. Oxidation and abrasion mechanisms dominated at the lower sliding velocities and loads. Increasing loads and velocities led to a combination of oxidation and adhesion. Plastic deformation was dominant for the higher applied load and sliding velocities.


2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Madhu K S ◽  
Venkatesh C V ◽  
Sharath B N ◽  
Karthik S

Composites are often chosen for tribological applications due to its tailored material properties. The development of hybrid metal matrix composites and the study of their wear behavior has been a prominent focus of materials science research. Present paper deals with fabrication of Al-7029/B4C/Gr hybrid composite using stir casting. Particle distribution and material phase are identified by SEM and XRD. Hardness of the composite increased to 101 BHN while base alloy with 63 BHN. Pin-on-disc Tribometer used to carry wear test and the experimentation conducted by considering three input wear control parameters: 15–35 N (load), 1.5–3.5 m/s (speed) and 200–600 m (distance). Addition of 6%B4C/3%Gr, wear rate of hybrid composites reduced. ANOVA confirmed that load as the most influencing parameter on wear rate. RSM results correlates with mean effect plots of ANOVA and experiments and found that the results are in good compliance. SEM graphs of worn surface confirms that more wear occurred with increased load.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.


Author(s):  
Sadineni Rama Rao ◽  
G. Padmanabhan ◽  
P.V. Chandra Shekar Rao

Aluminium composite materials are exponentially growing up and rapidly gaining importance because of their properties like low density, high strength, high stiffness, environmental resistance, low co-efficient of thermal expansion etc. In this context aluminum-boron carbide composites, with 2.5, 5 and 7.5 wt% of boron carbide (B4C) particulate reinforced, were prepared by stir casting process and the effect of the percentage of reinforcement of B4C on dry sliding wear and friction coefficient were investigated. The wear tests were carried out on a pin-on-disc type apparatus at a linear speed of 1m/s, sliding distance of 500 m and a constant load of 30 N. The coefficient of friction was recorded on line. Wear rates were calculated from mass loss measurements. Scanning electron microscope was used to examine the tribo-surface of worn Al- B4C composites. The results showed that the wear rate of 7.5 wt% B4C composites is 0.375 mg/min which is significantly lower than pure Al alloy (3.125 mg/min). The friction coefficient decreases from 0.477(for pure Al alloy) to 0.261(for 7.5 wt% B4C composites).


Sign in / Sign up

Export Citation Format

Share Document