Mechanical Properties of Particle Reinforced Resin Composites

2006 ◽  
Vol 514-516 ◽  
pp. 619-623 ◽  
Author(s):  
Amilcar Ramalho ◽  
P. Vale Antunes ◽  
M.D. Braga de Carvalho ◽  
M. Helena Gil ◽  
J.M.S. Rocha

The objective of the present work is the evaluation of the contents of inorganic particles in the mechanical and tribological behavior of polymeric matrix composites. In order to control easily the production of the specimens, a polyester resin was used as matrix and silica particles were added as inorganic filler. The volumetric particle content was ranged from 0 to 46%. In order to understand the influence of the inorganic load was evaluated the mechanical and tribological behaviors for several percentage of particle content was evaluated. There are several applications of inorganic fillers where their volume percentage is important, namely in dentistry. In posterior restorative resin materials, the particles percentage in volume goes up to 50 or more. In most cases spherical and irregular shaped fillers are dispersed randomly. In the studied composites the filler has irregular shape therefore the connection between the matrix and the particles is more effective. Function of the shape, concentration degree and particle size of the filler the composite mechanical properties vary greatly. All of these factors influence the mechanical properties of the particlereinforced composite, namely: wear resistance, hardness, flexural modulus, flexure strength and toughness The morphology of the failure surfaces was observed by scanning electron microscopy and the results were widely discussed.

2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2018 ◽  
Vol 7 (2) ◽  
pp. 897
Author(s):  
A I. Alateyah ◽  
F H. Latief

Polypropylene/exfoliated graphite nanoplatelets composites reinforced with a low concentration of nano-magnesia have been successfully fabricated, using injection molding machine. The mechanical properties and microstructure of the composites were investigated, in the present study. The XRD patterns of the composites showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with increasing the concentration of xGnP added into polypropylene matrix. In addition, the SEM micrographs revealed a good dispersion of fillers within the matrix. The results showed that increasing the amount of exfoliated graphite nanoplatelets up to 10 wt. % resulted in increasing the composite flexural strength, flexural modulus, and hardness up to 35% and 91%, 6.7%, respectively, compared to the monolithic polypropylene.  


2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


2012 ◽  
Vol 21 (5) ◽  
pp. 096369351202100 ◽  
Author(s):  
Bedri Onur Kucukyildirim ◽  
Aysegul Akdogan Eker

Industrial type multi-walled carbon nanotube (MWCNT) reinforced aluminum (Al) matrix composites are successfully fabricated by vacuum assisted infiltration of Al into the CNTs-Al preform and compressive mechanical properties of these composites are investigated. The compressive properties and hardness of CNT reinforced composites are fairly increased compared with the previous CNT/Al composite studies. Furthermore, our study confirms that the mechanical enhancements of the composites are interrelated with bridging and pulling-out of CNTs in the fracture surfaces. Moreover, the presence of CNTs leads to dispersion strengthening of the matrix because of their nano size.


2013 ◽  
Vol 845 ◽  
pp. 398-402 ◽  
Author(s):  
Chinnasamy Muthazhagan ◽  
A. Gnanavelbabu ◽  
G.B. Bhaskar ◽  
K. Rajkumar

This paper deals with the mechanical properties in conventional heat treatment of Al (6061)-B4C-Graphite. Aluminium Metal Matrix Composites (MMC) is fabricated through two step stir casting method. The composites were fabricated with various volume percentage levels as Aluminium reinforced with (5, 10 &15%) Boron Carbide and (5,10 & 15%) of Graphite. Fabricated composites were subjected to conventional heat treatment for enhancing the mechanical properties. Influences of Graphite reinforcement on mechanical properties of Aluminum-Boron carbide composites were analyzed. The microstructure studies were also carried out. It is observed that increasing the graphite content within the aluminum matrix results in significant decrease in ductility, hardness, ultimate tensile strength. The addition of boron carbide conversely increased the hardness of the composites.


Author(s):  
K H W Seah ◽  
S C Sharma ◽  
M Krishna

The mechanical properties and the fracture mechanism of composites consisting of ZA-27 alloy reinforced with titanium dioxide particles were investigated with the primary objective of understanding the influence of the particulate reinforcement on the mechanical behaviour of the ZA-27 alloy. The titanium dioxide particle content in the composites ranged from 0 to 6 per cent, in steps of 2 wt %. The composites were fabricated by the stir casting technique in which the reinforcement particles were dispersed in the vortex created in the molten matrix alloy. The study revealed improvements in Young's modulus, ultimate tensile strength (UTS), compressive strength, yield strength and hardness of the composites as the titanium dioxide content was increased, but at the expense of ductility and impact strength. The fracture behaviour of the composite was also significantly influenced by the presence of titanium dioxide particles. Eventual fracture was a result of crack propagation through the matrix as well as through the reinforcing particles. Scanning electron microscopy and fractography analyses were carried out to provide suitable explanations for the observed phenomena.


Author(s):  
M. A. Salem ◽  
I. G. El-Batanony ◽  
M. Ghanem ◽  
Mohamed Ibrahim Abd ElAal

Different Al-SiC metal matrix composites (MMCs) with a different matrix, reinforcement sizes, and volume fractions were fabricated using ball milling (BM) and powder metallurgy (PM) techniques. Al and Al-SiC composites with different volume fractions were milled for 120 h. Then, the Al and Al-SiC composites were pressed under 125 MPa and finally sintered at 450 °C. Moreover, microsize and combination between micro and nano sizes Al-SiC samples were prepared by the same way. The effect of the Al matrix, SiC reinforcement sizes and the SiC volume fraction on the microstructure evolution, physical and mechanical properties of the produced composites was investigated. The BM and powder metallurgy techniques followed by sintering produce fully dense Al-SiC composite samples with different matrix and reinforcement sizes. The SiC particle size was observed to have a higher effect on the thermal conductivity, electrical resistivity, and microhardness of the produced composites than that of the SiC volume fraction. The decreasing of the Al and SiC particle sizes and increasing of the SiC volume fraction deteriorate the physical properties. On the other hand, the microhardness was enhanced with the decreasing of the Al, SiC particle sizes and the increasing of the SiC volume fraction.


2015 ◽  
Author(s):  
Risa Yoshizaki ◽  
Kim Tae Sung ◽  
Atsushi Hosoi ◽  
Hiroyuki Kawada

Carbon nanotubes (CNTs) have very high specific strength and stiffness. The excellent properties make it possible to enhance the mechanical properties of polymer matrix composites. However, it is difficult to use CNTs as the reinforcement of long fibers because of the limitation of CNT growth. In recent years, a method to spin yarns from CNT forests has developed. We have succeeded in manufacturing the unidirectional composites reinforced with the densified untwisted CNT yarns. The untwisted CNT yarns have been manufactured by drawing CNTs through a die from vertically aligned CNT arrays. In this study, the densified untwisted CNT yarns with a polymer treatment were fabricated. The tensile strength and the elastic modulus of the yarns were improved significantly by the treatment, and they were 1.9 GPa and 140 GPa, respectively. Moreover, the polymer treatment prevented the CNT yarns from swelling due to impregnation of the matrix resin. Finally, the high strength CNT yarn composites which have higher volume fraction than a conventional method were successfully fabricated.


2001 ◽  
Vol 13 (4) ◽  
pp. 235-250 ◽  
Author(s):  
Roberto J Cano ◽  
Tan H Hou ◽  
Erik S Weiser ◽  
Terry L St Clair

Four NASA Langley-developed polyimide matrix resins, LaRC™-IA, LaRC™-IAX, LaRC™-8515 and LaRC™-PETI-5, were produced via a ‘salt-like’ process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fibre using the NASA LaRC™ multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behaviour and the resin rheology were characterized. Composite moulding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fibre/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fibre manufactured via poly(amide acid) solutions (30–35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.


2011 ◽  
Vol 415-417 ◽  
pp. 2244-2247 ◽  
Author(s):  
Feng Yan ◽  
Rong Xin Guo ◽  
Hai Ting Xia ◽  
Hai Yu ◽  
Yu Bo Zhang

The copper matrix composites reinforced by different WCP volume fraction were fabricated via Vacuum Hot-pressed Sintering technique. The tensile performance and fracture behavior of WCP/Cu composites were studied by uniaxial tension tests and the fracture surfaces were examined by SEM. The test results of mechanical properties show that the WCP/Cu composites exhibit obvious improvement of tensile property comparing with that of the matrix. The fracture surface morphology indicate a trend that the fracture of WCP/Cu composites changes from debonding to cleavage with the increase of the WCP volume fraction.


Sign in / Sign up

Export Citation Format

Share Document