A Built-In High Temperature Half-Bridge Power Module with Low Stray Inductance and Low Thermal Resistance for In-Wheel Motor Application

2017 ◽  
Vol 897 ◽  
pp. 677-680 ◽  
Author(s):  
Tatsuhiro Suzuki ◽  
Mari Yamashita ◽  
Tetsuya Mori ◽  
Sawa Araki ◽  
Satoshi Tanimoto ◽  
...  

In order to integrate a five-phase inverter system into the limited space of an in-wheel motor, a high temperature low stray inductance SiC half-bridge power module with a volume of about 5 ml was designed, fabricated and tested. The stray inductance in the module was calculated by an electromagnetic simulator and confirmed by measurements to be 4.4 nH. Double-pulse switching tests were conducted at temperatures up to 200°C. Thermal resistance, including that of the substrate, was calculated to be 0.153 °C/W. Fast switching capability was accomplished with an external gate resistance of 1 Ω.

2018 ◽  
Vol 86 (12) ◽  
pp. 107-112
Author(s):  
Fumiki Kato ◽  
Shinji Sato ◽  
Hidekazu Tanisawa ◽  
Kenichi Koui ◽  
Kinuyo Watanabe ◽  
...  

2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


2021 ◽  
Author(s):  
Hayden Carlton ◽  
John Harris ◽  
Alexis Krone ◽  
David Huitink ◽  
Md Maksudul Hossain ◽  
...  

Abstract The need for high power density electrical converters/inverters dominates the power electronics realm, and wide bandgap semiconducting materials, such as gallium nitride (GaN), provide the enhanced material properties necessary to drive at higher switching speeds than traditional silicon. However, lateral GaN devices introduce packaging difficulties, especially when attempting a double-sided cooled solution. Herein, we describe optimization efforts for a 650V/30A, GaN half-bridge power module with an integrated gate driver and double-sided cooling capability. Two direct bonded copper (DBC) substrates provided the primary means of heat removal from the module. In addition to the novel topology, the team performed electrical/thermal co-design to increase the multi-functionality of module. Since a central PCB comprised the main power loop, the size and geometry of the vias and copper traces was analyzed to determine optimal functionality in terms of parasitic inductance and thermal spreading. Thermally, thicker copper layers and additional vias introduced into the PCB also helped reduce hot spots within the module. Upon fabrication of the module, it underwent electrical characterization to determine switching performance, as well as thermal characterization to experimentally measure the total module’s thermal resistance. The team successfully operated the module at 400 V, 30 A with a power loop parasitic inductance of 0.89 nH; experimental thermal measurements also indicated the module thermal resistance to be 0.43 C/W. The overall utility of the design improved commensurately by introducing simple, yet effective electrical/thermal co-design strategies, which can be applied to future power modules.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000056-000060 ◽  
Author(s):  
Z. Cole ◽  
B. S. Passmore ◽  
B. Whitaker ◽  
A. Barkley ◽  
T. McNutt ◽  
...  

In high frequency power conversion applications, the dominant mechanism attributed to power loss is the turn-on and -off transition times. To this end, a full-bridge silicon carbide (SiC) multi-chip power module (MCPM) was designed to minimize parasitics in order to reduce over-voltage/current spikes as well as resistance in the power path. The MCPM was designed and packaged using high temperature (> 200 °C) materials and processes. Using these advanced packaging materials and devices, the SiC MCPM was designed to exhibit low thermal resistance which was modeled using three-dimensional finite-element analysis and experimentally verified to be 0.18 °C/W. A good agreement between the model and experiment was achieved. MCPMs were assembled and the gate leakage, drain leakage, on-state characteristics, and on-resistance were measured over temperature. To verify low parasitic design, the SiC MCPM was inserted into a boost converter configuration and the switching characteristics were investigated. Extremely low rise and fall times of 16.1 and 7.5 ns were observed, respectively. The boost converter demonstrated an efficiency of > 98.6% at 4.8 kW operating at a switching frequency of 250 kHz. In addition, a peak efficiency of 96.5% was achieved for a switching frequency of 1.2 MHz and output power of 3 kW.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000402-000406
Author(s):  
B. Passmore ◽  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
...  

A high temperature, high performance power module was developed for extreme environment systems and applications to exploit the advantages of wide bandgap semiconductors. These power modules are rated > 1200V, > 100A, > 250 °C, and are designed to house any SiC or GaN device. Characterization data of this power module housing trench MOSFETs is presented which demonstrates an on-state current of 1500 A for a full-bridge switch position. In addition, switching waveforms are presented that exhibit fast transition times.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000028-000031 ◽  
Author(s):  
Fumiki Kato ◽  
Hiroki Takahashi ◽  
Hidekazu Tanisawa ◽  
Kenichi Koui ◽  
Shinji Sato ◽  
...  

Abstract In this paper, we demonstrate that the structural degradation of a silicon carbide (SiC) power module corresponding to thermal cycles can be detected and tracked non-destructively by transient thermal analysis method. The purpose of this evaluation is to analyze the distribution of the thermal resistance in the power module and to identify the structure deterioration part. The power module with SiC-MOSFET were assembled using ZnAl eutectic solder as device under test. The individual thermal resistance of each part such as the SiC-die, the die-attachment, the AMCs, and the baseplate was successfully evaluated by analyzing the structure function graph. A series of thermal cycle test between −40 and 250°C was conducted, and the power modules were evaluated their thermal resistance taken out from thermal cycle test machine at 100, 200, 500 and 1000 cycles. We confirmed the increase in thermal resistance between AMCs and base plate in each thermal cycle. The portion where the thermal resistance increased is in good agreement with the location of the structural defect observed by scanning acoustic tomography (SAT) observation.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000312-000317
Author(s):  
Adam Morgan ◽  
Xin Zhao ◽  
Jason Rouse ◽  
Douglas Hopkins

Abstract One of the most important advantages of wide-bandgap (WBG) devices is high operating temperature (>200°C). Power modules have been recognized as an enabling technology for many industries, such as automotive, deep-well drilling, and on-engine aircraft controls. These applications are all required to operate under some form of extreme environmental conditions. Silicone gels are the most popular solution for the encapsulation of power modules due to mechanical stress relief enabled by a low Young's modulus, electrical isolation achieved due to high dielectric strength, and a dense material structure that protects encapsulated devices against moisture, chemicals, contaminants, etc. Currently, investigations are focused on development of silicone gels with long-term high-temperature operational capability. The target is to elevate the temperature beyond 200°C to bolster adoption of power modules in the aforementioned applications. WACKER has developed silicone gels with ultra-high purity levels of < 2ppm of total residual ions combined with > 200°C thermal stability. In this work, leakage currents through a group of WACKER Chemie encapsulant silicone gels (A, B, C) are measured and compared for an array of test modules after exposure to a 12kV voltage sweep at room temperature up to 275°C, and thermal aging at 150°C for up to more than 700 hours. High temperature encapsulants capable of producing leakage currents less than 1μA, are deemed acceptable at the given applied blocking voltage and thermal aging soak temperature. To fully characterize the high temperature encapsulants, silicone gel A, B, and C, an entire high temperature module is used as a common test vehicle. The power module test vehicle includes: 12mil/40mil/12mil Direct Bonded Copper (DBC) substrates, gel under test (GUT), power and Kelvin connected measurement terminals, thermistor thermal sensor to sense real-time temperature, and 12mil Al bonding wires to manage localized high E-Fields around wires. It was ultimately observed that silicone gels B and C were capable of maintaining low leakage current capabilities under 12kV and 275°C conditions, and thus present themselves as strong candidates for high-temperature WBG device power modules and packaging.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000757-000762 ◽  
Author(s):  
Takeshi ANZAI ◽  
Yoshinori MURAKAMI ◽  
Shinji SATO ◽  
Hidekazu TANISAWA ◽  
Kohei HIYAMA ◽  
...  

A high temperature sandwich structured power module for high temperature SiC power semiconductor devices has been accomplished. Problems were found in the high temperature building-up process of the module caused by excess warpage of the ceramic substrate. Also the high temperature operation of the power module brings an excess warpage of the structure caused by parts having different coefficients of thermal expansion (CTEs) from each other. In this paper, some countermeasures to overcome the problems are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document