Investigation on the Dealloying Process of Mn75-xNi25Alx (x=0, 5, 10, 15, 20 at. %) Alloy Ribbons

2018 ◽  
Vol 913 ◽  
pp. 752-758
Author(s):  
Hao Yi Chi ◽  
Yan Wen Bai ◽  
Lu Yao Wang ◽  
Min Zuo

The main purpose of this study is to investigate the impact of alloy composition and different dealloying condition on the microstructure of the nanoporous Ni. In this paper, Mn75-xNi25Alx(x=0, 5, 10, 15, 20 at. %) alloy ribbons were prepared by single roller rotary quenching system and then further investigated by X-ray Diffraction (XRD). Corrosion resistance was evaluated by means of Tafel polarization. The nanoporous nickel was synthesized by selective dissolution of Mn and Al, which is known as dealloying. The corrosion parameters of dealloying process have been studied in detail. The alloy ribbon developed into amorphous when the Al content reached 15 at.%. According to the Icorr, the corrosion resistance of Mn-Ni-Al alloy ribbons increases with the addition of Al. The addition of Al element, especially when Al content is over 15 at. %, will hinder the dealloying process resulting in the destruction of the nanoporous structure. The dealloying time is also critical to the microstructure of nanoporous nickel obtained. It was found in this work that, during dealloying process, 90 min is insufficient for complete selective dissolution of the active component (Mn and Al). However, the overextended dealloying time of 1440 min time will cause the coarsening destruction of inner porous due to the diffusion of noble element (Ni).

2014 ◽  
Vol 670-671 ◽  
pp. 271-274
Author(s):  
Jun Wang ◽  
Long Huang

TiO2 films were prepared on glass and 316L stainless steel (316L SS) using hydrothermal method. The microstructures of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It indicated that the films crystallized as anatase phase with mirror-like surface morphology. The optical properties of the TiO2 film were studied by Ultraviolet Visible Spectroscopy (UV-Vis). The results showed that the film was transparent in visible range. The cut-off point of the sample was red-shifted after annealed treatment. The corrosion resistance of the film was evaluated by using Tafel polarization curve in simulated body solution. The corrosion current density was decreased from 8.556 μA/cm2 (316L SS) to 1.421 μA/cm2 (TiO2 film/316L SS). While, the corrosion potential was increased from-0.402 V (316L SS) to-0.325 V (TiO2 film/316L SS). The 316L SS with TiO2 film has better corrosion resistance.


10.30544/127 ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 1-6 ◽  
Author(s):  
A. Bakhtiari ◽  
I. Berenjani

The texture, microhardness, and corrosion resistance of cold worked 316L steel were evaluated. The X-ray diffraction analysis in particular permitted to disclose and identify the main textures variations in the structure of the investigated steel after its deformation within the range 10 - 80%. The corrosion resistance was studied using Tafel polarization tests. It was shown that the increase in deformation degree drastically decreases the relative intensity of {111} planes. Besides, with high degree of cold deformation microhardness increases while corrosion resistance deteriorates.  This article has been retracted. Link to the retraction


2014 ◽  
Vol 599-601 ◽  
pp. 40-43
Author(s):  
Xia Zhao ◽  
Shuan Liu ◽  
Bao Rong Hou

Corrosion resistance of X52 pipeline steel at sea mud zone in Qingdao Huiquan test station was investigated by using Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The morphology and chemical composition of the corrosion products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that the corrosion current density of X52 pipeline steel increased with immersion time. The corrosion products were loose and mainly included Fe3O4, Fe2O3 and FeOCl, which absorbed on the specimen surface accelerating the cathodic depolarization reaction.


Author(s):  
Mariola Kądziołka-Gaweł ◽  
Maria Czaja ◽  
Mateusz Dulski ◽  
Tomasz Krzykawski ◽  
Magdalena Szubka

AbstractMössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis-octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five. This temperature can be treated as the second stage of dehydroxylation. The temperature dependence on the integral intensity ratio between bands centered at ~590 and 705 cm−1 (I590/I705) clearly reflects the temperature at which six-coordinated polyhedra are transformed into five-coordinated polyhedra. X-ray photoelectron spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p and O1s core levels, highlighted a route to identify the position of Si, Al, K and Fe cations in a structure of layered silicates with temperature. All the measurements show that the sample with a higher aluminum content and a lower iron content in octahedral sites starts to undergo a structural reorganization at a relatively higher temperature than the less aluminum-rich sample does. This suggests that iron may perform an important role in the initiation of the dehydroxylation of aluminoceladonites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikolaj Grabowski ◽  
Ewa Grzanka ◽  
Szymon Grzanka ◽  
Artur Lachowski ◽  
Julita Smalc-Koziorowska ◽  
...  

AbstractThe aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice. The InGaN QWs were almost identical to those grown on unimplanted GaN substrates. In the next step of the experiment, we annealed samples grown on unimplanted and implanted GaN at temperatures of 900 °C, 920 °C and 940 °C for half an hour. The samples were examined using Photoluminescence, X-ray Diffraction and Transmission Electron Microscopy. We found out that the decomposition of InGaN QWs started at lower temperatures for the samples grown on the implanted GaN substrates what provides a strong experimental support that point defects play important role in InGaN decomposition at high temperatures.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2007 ◽  
Vol 40 (4) ◽  
pp. 675-683 ◽  
Author(s):  
Cristy L. Azanza Ricardo ◽  
Mirco D'Incau ◽  
Paolo Scardi

A new procedure is proposed to determine sub-surface residual stress gradients by laboratory X-ray diffraction measurements at different depths using a chemical layer-removal technique. The standard correction algorithm for stress relaxation due to layer removal is improved by including corrections for X-ray absorption, and by the addition of constraints imposed by the mechanical equilibrium conditions. Besides correcting the data,i.e.providing more reliable through-thickness residual stress trends, the proposed procedure also provides an elastically compatible and plausible estimate of the residual stress inside the component, well beyond the measured region. The application of the model is illustrated for a set of Al-alloy components shot-peened at different Almen intensities. Results are compared with those given by `blind hole drilling', which is an independent and partly destructive method.


2021 ◽  
Vol 325 ◽  
pp. 181-187
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

This article examines the influence of fly ash on corrosion resistance of refractory forsterite-spinel ceramics by molten iron as a corrosive medium. Fly ash in comparison with alumina were used as raw materials and sources of aluminium oxide for synthesis of forsterite-spinel refractory ceramics. Raw materials were milled, mixed in different ratios into two sets of mixtures and sintered at 1550°C for 2 hours. Samples were characterized by X-ray diffraction analysis and thermal dilatometric analysis. Crucibles were then made from the fired ceramic mixtures and fired together with iron at its melting point of 1535°C for 5 hours. The corrosion resistance was evaluated by scanning electron microscopy on the transition zones between iron and ceramics. Mixtures with increased amount of spinel had higher corrosion resistance and mixtures with fly ash were comparable to mixtures with alumina in terms of corrosion resistance and refractory properties.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
David Simeone ◽  
Dominique Gosset ◽  
Mickael Dollé ◽  
Georgette Petot-Ervas

AbstractWe have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350006
Author(s):  
AHMED E. HANNORA ◽  
FARIED F. HANNA ◽  
LOTFY K. MAREI

Mechanical alloying (MA) method has been used to produce nanocrystallite Mn -15at.% Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α- Mn and aluminum powder samples show a mixture of α + β- MnAl phases after 20 h of milling and changes to a dominant β- MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall–Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are ~ 2.1 emu/g and ~ 92 Oe, respectively.


Sign in / Sign up

Export Citation Format

Share Document