Aqueous Degradable Polyurethane Elastomers for Oil & Gas Applications

2021 ◽  
Author(s):  
Matthew Peter Burdzy

Abstract A new class of patent pending aqueous degradable polyurethane elastomers have been developed that can be used in oil & gas exploration, drilling, completion and production where a degradable part is needed to provide a useful service life then quickly degrade when exposed to heat and water. This polyurethane technology eliminates the need for costly secondary operations such as milling, drilling or removing tools in downhole applications saving time and reducing cost. The degradable polyurethane is a low viscosity two-part heat cured elastomer that is easy to mold using low cost hot cast tooling techniques. The novel liquid polyurethane prepolymer can be formed into films, seals, sealing elements, tools, complex geometries or other aqueous degradable elastomeric components. The polymer is a tough tear resistant high strength elastomer with a tensile strength exceeding 5000 psi, elongation over 500%, and a 70% compression modulus greater than 13,000 psi. When integrated as a sealing element in a degradable hydraulic fracturing plug, the polyurethane is designed to be pumped down-hole, set and seal then degrade once the operation is complete. Once placed into service, the useful operating lifetime of this polyurethane chemistry is more than six hours when immersed in aqueous fluids at 80°C (176°F) (i.e. water or 3% potassium chloride). The elastomer can be compressed over 70% during its service-life providing a stable set of mechanical properties during use. The elastomer beings to fracture within two days and quickly degrades at 80°C (176°F) providing consistent and reliable results. Approximately 70% is completely water soluble while the remaining 30% fractures into small particles that can be easily removed or remain in the well. This paper reviews the development of the technology, applications, mechanical properties, service life, degradation profile and product life cycle.

2021 ◽  
Author(s):  
Chao Chen ◽  
Qingong Zhu ◽  
Huanping Wang ◽  
Feifei Huang ◽  
Qinghua Yang ◽  
...  

Abstract As is well known, silicate glass has a stable glass-forming region and mature drawing processes into fibers. In this study, to obtain enhanced mechanical properties, glasses with a composition of SiO2-Al2O3-MgO-CaO-B2O3-Fe2O3 were synthesized using TiO2 and CeO2. When the amount of TiO2 and CeO2 is less than 2 wt%, the mechanical properties increase with increases in the TiO2 and CeO2. However, as the amount of TiO2 and CeO2 increases from 2 to 3.5 wt%, the mechanical properties decrease. Co-doping with 1 wt% TiO2 and 1 wt% CeO2 was found to be the optimum approach, with a density, bending strength, compression strength, and compression modulus of 2.626 g/cm3, 108.36 MPa, 240.18 MPa, and 115.03 GPa, respectively. The optical band gap and Raman spectroscopy proved that, as long as the content of oxygen bonds reaches the maximum level, a kind of best structural stability and mechanical properties will be achieved. Hence, this type of high-strength silicate glass can be used in optical fibers for military defense, wind power generation, and transportation.


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


2018 ◽  
Vol 25 (6) ◽  
pp. 1039-1058 ◽  
Author(s):  
Sumit Das Lala ◽  
Ashish B. Deoghare ◽  
Sushovan Chatterjee

AbstractThe inherent properties of bio-composites such as biodegradability, environment friendly, low cost of production, high strength and durability make them a suitable replacement to traditional materials such as glass and nylon. Bio-polymers are finding wide applications due to their intrinsic properties such as low density, low thermal conductivity, corrosion resistance and ease of manufacturing complex shapes. This paper aims toward a comprehensive study on polymer bio-composites. The review mainly focuses on types of reinforcements such as natural fibers, seed shells, animal fibers, cellulose, bio-polymers, bio-chemicals and bioceramics which enhance the mechanical properties, such as tensile strength, compressive strength, flexural strength, Young’s modulus and creep behavior, of the composites. The pertinent study carried out in this review explores an enormous potentiality of the composites toward a wide variety of applications.


2019 ◽  
Vol 945 ◽  
pp. 188-192 ◽  
Author(s):  
A.A. Pykin ◽  
E.Y. Gornostaeva ◽  
N.P. Lukutsova ◽  
J.S. Pykina

The physical and mechanical properties of lightweight constructional heat-insulating concrete (sawdust gypsum concrete) with high-strength gypsum binder, modified by food cotton microcrystalline cellulose and organic fillers of plant origin from the waste wood of coniferous and deciduous species in the form of cavitationly processed pine and birch sawdust have been studied. The dependence of the cavitation extraction time of water-soluble reducing substances (sugars) from sawdust on the strength of sawdust gypsum concrete is established. The changes in microstructure of the gypsum matrix, the mean density, bending tension strength and compression strength, the thermal conductivity coefficient of sawdust gypsum concrete on the basis of the cavitationly processed sawdust with the introduction of microcrystalline cellulose are analyzed. It is proven that microcrystalline cellulose compacts the space between the crystalline hydrates of calcium sulfate dihydrate in the gypsum matrix microstructure and improves the physical and mechanical properties of sawdust gypsum concrete.


2013 ◽  
Vol 477-478 ◽  
pp. 1288-1292
Author(s):  
Bo Long Li ◽  
Tong Liu ◽  
Jie Yuan ◽  
Zuo Ren Nie

The high strength and low cost Ti-Fe based alloy was produced by double vacuum induction melting method followed by hot deformation. The microstructure has been investigated by Optical Microscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The microstructure of as-forged alloy is composed of α and β phase without the precipitation of TiFe intermetallic compound. The Ti-Fe-Al alloys show good comprehensive mechanical properties, demonstrating ultimate tensile strength of 1100MPa and elongation above10%. The results indicate the Fe is a good candidate for solution strengthening and simultaneously increasing ductility in titanium alloys. Effect of the Fe and Al elements on the microstructure and mechanical properties have been discussed.


2021 ◽  
Vol 245 ◽  
pp. 01003
Author(s):  
Libo Pan ◽  
Wen Tan ◽  
Wenqiang Zhou ◽  
Junlin Wang

DP980 is a promising light-weightening material in car body. To avoid high investment of strong cooling system, a new DP980 steel with low cooling rate requirement was developed. The mechanical properties and microstructure were analyzed under different manufacturing process. It could be concluded that the chemical composition design should be reasonable and of low cost to achieve both high strength and also austenite to martensite transformation at low cooling rate. Strength increased with coiling temperature decreasing during hot rolling, and higher annealing temperature and lower over aging temperature were favourable to higher strength. The austenite-martensite transforming could be completed at even lower rapid cooling rate of 20°C/s. Through optimized manufacturing process parameters, the new DP steel product with good mechanical properties could be obtained successfully, which provided a new option for normal production line to produce ultra high strength steel.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5778
Author(s):  
Szymon Kosiński ◽  
Marcin Gonsior ◽  
Piotr Krzyżanowski ◽  
Iwona Rykowska

Polyurea is a synthetic high-strength elastomeric material that can be sprayed as a coating over existing structures in order to protect against weathering effects. It is ideal for anti-corrosion protection and is characterized by excellent mechanical properties and adhesion to various surfaces. Further development of this technology may allow obtaining new coatings with improved antistatic properties, which would be an excellent alternative compared to used antistatic epoxy paints. This paper will examine the influence of tetraalkylammonium salt (1), potassium hexafluorophosphate solution (2) and imidazolium-based ionic liquid (3) on the improvement of antistatic properties of the polyurea-polyurethane coatings. In addition, the modified samples were also verified in terms of changes in mechanical properties and the appearance of functional groups other than in the reference sample, as well as surface defects that may arise due to incompatibility of the antistatic additive with the polymer matrix. In order to obtain information about the properties mentioned above, the electrical resistance was determined, the tensile strength and elongation were measured, FT-IR spectra were made, and images were taken with the use of scanning electron microscopy. The conducted research showed that the antistatic properties of the tested hybrid coatings could be improved, but their use may be associated with certain limitations that should be taken into account when designing such materials.


2021 ◽  
Author(s):  
Xiaolong Gong ◽  
Xinwang Liu ◽  
Zheng Chen ◽  
Zhiyuan Yang ◽  
Wenming Jiang ◽  
...  

Abstract Core materials with high strength and excellent collapsibility are important for the manufacture of hollow composite structure castings. In this work, a novel technology to fabricate water-soluble Na2SO4-NaCl based salt cores with high strength and low cost by layered extrusion forming (LEF) was reported. The water-soluble Na2SO4 and NaCl powder were used as the matrix materials, and the bauxite powder was used as the reinforcing material. The effects of bauxite powder content and liquid phase sintering parameters on properties of the salt cores were studied. The results show that the salt-based slurry exhibits shear thinning property within the studied bauxite powder contents. When the content of bauxite powder was 20 wt.% and the sintering was at 630 ℃/30 min, the obtained salt cores show an optimal comprehensive performance, with the bending strength, linear shrinkage, water-solubility rate and moisture rate of 24.43 MPa, 6.3%, 207.6 (g/min·m2), and 0.29%, respectively. The complex water-soluble salt core samples prepared under the optimal parameters display high-strength and well-shaped morphology.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Yasong Li ◽  
Ruixuan Li ◽  
Yong Zhang

A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2 Cu2 Six (x=0, 0.3, 0.6, 0.9, 1.2 at.%) were prepared by a vacuum induction furnace with a steel die. With the addition of Si, the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase, while the compressive strength of the alloys increases first and then decreases slowly. It is particularly noteworthy that the compression plasticity also exhibits this trend. When the Si content is 0.9 at.%, the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%. The effect of the addition of Si on the serration behavior of alloy was also studied; we found that the addition of Si introduces a new MgSi phase, and with the change of Si is significantly affects the morphology of the precipitated phase, which affects the serration behavior of the alloys. The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work, we have provided a method and a composition for the preparation of a low-cost, high-strength, lightweight medium-entropy alloys.


2012 ◽  
Vol 217-219 ◽  
pp. 1225-1229 ◽  
Author(s):  
Huseyin Selcuk Halkaci ◽  
Mevlut Turkoz ◽  
Osman Yiğit

Aluminum alloys have good properties such as high strength-to-weight ratio, corrosion resistance and relatively low cost. Nowadays they are primarily used as wrought and cast in many industries such as automotive, aviation and aerospace because of these properties. Aluminum alloys are classified into two categories as non-heat-treatable and heat-treatable. The mechanical properties of the heat-treatable alloys are improved by solution heat treatment and controlled ageing. While mechanical properties of some heat-treatable alloys, especially 2XXX series, become stable with natural ageing at room temperature within a few days, some of them are unstable and exhibit significant changes in properties even after many years. Heat treatment process of AA 2024 is very sensible and critical and therefore should be carefully performed. In this research, effects of the solution temperature, soaking time, heating rate and quenching delay condition of AA 2024 on the mechanical properties were investigated.


Sign in / Sign up

Export Citation Format

Share Document