Study of Void Formation Mechanism in Electroplated SnAg Solder Bump
Abstract SnAg electroplating method is widely used in the formation of LF solder bump for flip chip connection. While electroplating is able to form void free solder bump in a suitable operating condition, void may occur suddenly when used in mass production. This study aims at understanding the gas source in the void of electroplated SnAg solder bumps and determining the manufacturing process factors which affect the void formation. There are various types of void formation mode. One mode is H2 gas generation on cathode surface during electroplating. Both the cross-sections of solder bumps, as well as an analysis data of the gas in the void taken by the TDS (Thermal Desorption Spectrometry) were evaluated. The cross-section of the solder bump which contains void due to the reflow process revealed the existence of several tens of nm to several μm size pits in the solder bump before reflow. TDS analysis indicates that the pits consisted of mainly H2O, H2 and the decomposition of organics. A possible void formation mechanism is the evaporation of H2 gas and the incorporated electrolyte solution in the bump by reflow. These pits in the solder were caused by various process parameters. One of the causes is due to the setting of the current density in the SnAg electroplating process being inappropriate. The current density should be adjusted corresponding to the electrolyte performance and bump design such as PR thickness, opening diameter and bump density. The computer simulation demonstrated that a thick PR limits the diffusion of the Sn2+ ions into via holes and having the current density too high causes a lack of Sn2+ ions on the cathode surface and causes H2 gas generation. The other mode of void formation is Ag displacement of the under bump metallization (UBM) surface in dwell time in the SnAg electrolyte solution before the start of plating. The adjustment of each process parameter can eliminate the source of the void and achieve a high reliability of SnAg bump formation.