Measuring greenhouse gas emissions from point sources in agriculture

2006 ◽  
Vol 86 (3) ◽  
pp. 355-371 ◽  
Author(s):  
S M McGinn

Carbon dioxide, methane and nitrous oxide emissions from agricultural sources have a significant role in the overall enhancement of the global greenhouse gas (GHG) effect. In research, measurements of GHG emissions are made to improve upon emission factors used in national inventories, identify and promote mitigation practices, and drive policy on GHG emissions in agriculture. These measurements are fundamental to the process of better management of GHG emissions. There is a variety of measurement techniques used in GHG research depending on the measurement environment and available resources. Techniques that use chambers or micrometeorological measurements are commonly employed for calculating emissions of GHG from point sources in agriculture, such as livestock and manure-holding facilities. This review examines these techniques, their limitations, and discusses methods to quantify their accuracy and precision. Emerging techniques like the use of dispersion models provide opportunities to directly determine emissions from whole farms. A few micrometeorological techniques (integrated horizontal flux and mass difference) are ideal for point sources such as manure storage facilities. For smaller sources, chambers are still recommended. In designing GHG emission studies, employing more than one technique when measuring GHG emissions is recommended, as often differences can exist due to technique. Ideally, a controlled release of the target gas, and its recovery, should also be conducted to evaluate techniques prior to their application. Although many techniques are often sensitive enough to quantify mitigation practices, i.e., the relative change in emissions, it is more difficult to determine “ true”emission factors as required for inventory work. It follows that the precision and accuracy of the techniques must accompany their application when estimating GHG emissions. Key words: Greenhouse gas, techniques, chambers, methane, agriculture, cattle

2020 ◽  
Author(s):  
Friedemann Reum ◽  
Liesbeth Florentie ◽  
Wouter Peters ◽  
Matthieu Dogniaux ◽  
Cyril Crevoisier ◽  
...  

<p>Efforts to reduce greenhouse gas (ghg) emissions require support by independent monitoring. The inverse modeling emission quantification approach, based on measurements of atmospheric ghg mixing ratios, promises objective ghg flux estimates consistent across country borders. Yet, ghg flux quantification on national scales and below is impeded both by the sparsity of atmospheric data and uncertainties in atmospheric ghg transport modeling. To overcome these challenges, the EU supports two concept studies for ghg monitoring satellites via the H2020 projects CHE (CO2M satellite) and SCARBO. Both systems aim at vast coverage and high accuracy and precision. Within these projects, we developed a variant of the CarbonTracker Europe inverse model (van der Laan-Luijkx et al., 2017) that uses WRF-GHG (Beck et al., 2011) to model atmospheric transport (CTDAS-WRF). In this presentation, we first introduce how the versatility of WRF-Chem and modular structure of CTDAS enables our model to estimate ghg fluxes across scales, from point sources to integrated continental fluxes. Next, we used our new model to demonstrate the potential skill of the proposed SCARBO satellite constellation for reducing uncertainties of national-scale CO2 fluxes, focusing on aerosol-induced errors. We demonstrate that this concept has the potential to greatly improve upon existing CO2 monitoring systems because of its unprecedented coverage. Lastly, we outline our plans for using CTDAS-WRF to assess the skill of the proposed CO2M monitoring system to estimate city-scale CO2 emissions.</p><p>References:<br>Beck, V., et al.: The WRF Greenhouse Gas Model (WRF-GHG) Technical Report, [online] Available from: https://www.bgc-jena.mpg.de/bgc-systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf, 2011.<br>van der Laan-Luijkx, I. T., et al.: The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: Implementation and global carbon balance 2001-2015, Geosci. Model Dev., 10(7), 2785–2800, doi:10.5194/gmd-10-2785-2017, 2017.</p><p>Acknowledgements:<br>This work has received funding from the European Union’s H2020 research and innovation programme under grant agreement No 769032 (SCARBO) and 776186 (CHE).</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background: Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce greenhouse gas (GHG) emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring of GHGs. We present the Hestia Scope 1 fossil fuel CO2 (FFCO2) emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015 (Hestia-Baltimore v1.6). We also compare the Hestia-Baltimore emissions to overlapping Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory for 2014. Results: The Hestia-Baltimore emissions in 2014 totaled 1487.3 kt C (95% confidence interval of 1,158.9 – 1,944.9 kt C), with the largest emissions coming from onroad (34.2% of total city emissions), commercial (19.9%), residential (19.0%), and industrial (11.8%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 FFCO2 emissions included onroad, natural gas consumption in buildings, and some electricity generating facilities within city limits. The self-reported Scope 1 FFCO2 total of 1,182.6 kt C was similar to the sum of matching emission sectors and fuels in Hestia-Baltimore v1.6. However, 20.5% of Hestia-Baltimore’s emissions were in sectors and fuels that were not included in the self-reported inventory. Petroleum use in buildings were omitted and all Scope 1 emissions from industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft were categorically excluded.Conclusions: The omission of petroleum combustion in buildings and categorical exclusions of several sectors resulted in an underestimate of total Scope 1 FFCO2 emissions in Baltimore’s self-reported inventory. Accurate Scope 1 FFCO2 emissions, along with Scope 2 and 3 emissions, are needed to inform effective urban policymaking for system-wide GHG mitigation. We emphasize the need for comprehensive Scope 1 emissions estimates for emissions verification and measuring progress towards Scope 1 GHG mitigation goals using atmospheric monitoring.


2020 ◽  
Author(s):  
Geoffrey Scott Roest ◽  
Kevin R Gurney ◽  
Scot M Miller ◽  
Jianming Liang

Abstract Background Cities contribute more than 70% of global anthropogenic carbon dioxide (CO2) emissions and are leading the effort to reduce GHG emissions through sustainable planning and development. However, urban greenhouse gas mitigation often relies on self-reported emissions estimates that may be incomplete and unverifiable via atmospheric monitoring. We present the Hestia Scope 1 fossil fuel CO2 emissions for the city of Baltimore, Maryland – a gridded annual and hourly emissions data product for 2010 through 2015.Results The emissions in the base year of 2011 totaled 1431.5 kt C, with the largest emissions coming from onroad (35.0% of total city emissions), commercial (18.3%), residential (16.7%), and industrial (12.6%) sectors. Scope 1 electricity production and marine shipping were each generally less than 10% of the city’s total emissions. Baltimore’s self-reported Scope 1 emissions of 1,182.6 kt C were 22.8% lower than Hestia-Baltimore emission in 2014, largely due to the omission of petroleum consumption in buildings and several sectors that largely fall outside the city’s regulatory purview – industrial point sources, marine shipping, nonroad vehicles, rail, and aircraft.Conclusions We emphasize the need for comprehensive, Scope 1-only emissions estimates for emissions verification and measuring progress towards greenhouse gas mitigation goals using atmospheric monitoring, but we also acknowledge that city planners may desire a greater mix of scope 1, 2, and 3 emissions with an emphasis on activities under local policy control.


Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 76
Author(s):  
Xia Zhu-Barker ◽  
Mark Easter ◽  
Amy Swan ◽  
Mary Carlson ◽  
Lucas Thompson ◽  
...  

Greenhouse gas (GHG) emissions from arid irrigated agricultural soil in California have been predicted to represent 8% of the state’s total GHG emissions. Although specialty crops compose the majority of the state’s crops in both economic value and land area, the portion of GHG emissions contributed by them is still highly uncertain. Current and emerging soil management practices affect the mitigation of those emissions. Herein, we review the scientific literature on the impact of soil management practices in California specialty crop systems on GHG nitrous oxide emissions. As such studies from most major specialty crop systems in California are limited, we focus on two annual and two perennial crops with the most data from the state: tomato, lettuce, wine grapes and almond. Nitrous oxide emission factors were developed and compared to Intergovernmental Panel on Climate Change (IPCC) emission factors, and state-wide emissions for these four crops were calculated for specific soil management practices. Dependent on crop systems and specific management practices, the emission factors developed in this study were either higher, lower or comparable to IPCC emission factors. Uncertainties caused by low gas sampling frequency in these studies were identified and discussed. These uncertainties can be remediated by robust and standardized estimates of nitrous oxide emissions from changes in soil management practices in California specialty crop systems. Promising practices to reduce nitrous oxide emissions and meet crop production goals, pertinent gaps in knowledge on this topic and limitations of this approach are discussed.


2016 ◽  
Vol 847 ◽  
pp. 321-327
Author(s):  
Yan Cui Cao ◽  
Feng Gao ◽  
Zhi Hong Wang ◽  
Xian Zheng Gong ◽  
Xiao Qing Li

Magnesium is a promising lightweight and green metallic engineering material, but the environmental impact of primary magnesium production stage, especially greenhouse gas (GHG) emissions cannot be ignored. In this study, the life cycle energy consumption and GHG emissions caused by the production of primary magnesium in the years of 2003-2013 in China were calculated; the factor decomposition was conducted to analyze the GHG emissions of magnesium production process by using logarithmic mean Divisia index method (LMDI), including energy GHG emission factors, energy structure, energy consumption per ton of primary magnesium, production, emissions per unit of dolomite and ferrosilicon, and dolomite and ferrosilicon consumptions per ton of primary magnesium. The results showed that GHG emissions of primary magnesium production increased 260.29*104 t CO2eq in total from 2003 to 2013. The variety magnesium production contributed the biggest part of GHG emissions, accounting for 418.17%. The energy structure took second place on the contribution of GHG emissions, accounting for-161.49%. The nest part was energy consumption per ton of primary magnesium, accounting for-138.97%. While, the contribution of energy GHG emission factors, emissions per unit of dolomite and ferrosilicon, and dolomite and ferrosilicon consumptions per ton of primary magnesium was relatively small, which were 0.88%, 0.00% -2.72% -4.73% and-11.13%, respectively. Thus, it is the key methods to reduce GHG emissions by optimizing the energy structure and decreasing the energy consumption.


Sign in / Sign up

Export Citation Format

Share Document