Optimization by CFD Simulation of Spray Formation Parameters to Adapt Direct Injection High-Pressure Fuel Injectors to High-Speed SI-Engines

Author(s):  
M. Pontoppidan ◽  
G. Gaviani ◽  
G. Bella ◽  
A. De Maio
Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2000 ◽  
Vol 123 (3) ◽  
pp. 413-424 ◽  
Author(s):  
M. J. van Nieuwstadt ◽  
I. V. Kolmanovsky

Modern direct injection engines feature high pressure fuel injection systems that are required to control the fuel quantity very accurately. Due to limited manufacturing accuracy these systems can benefit from an on-line adaptation scheme that compensates for injector variability. Since cylinder imbalance affects many measurable signals, different sensors and algorithms can be used to equalize torque production by the cylinders. This paper compares several adaptation schemes that use different sensors. The algorithms are evaluated on a cylinder-by-cylinder simulation model of a direct injection high speed diesel engine. A proof of stability and experimental results are reported as well.


Author(s):  
Zachary G. Mills ◽  
Charles E. A. Finney ◽  
K. Dean Edwards ◽  
J. Allen Haynes

To meet the demand for greater fuel efficiency in passenger vehicles, various strategies are employed to increase the power density of light-duty SI engines, with attendant thermal or system efficiency increases. One approach is to incorporate higher-performance alloys for critical engine components. These alloys can have advantageous thermal or mechanical properties at higher temperatures, allowing for components constructed from these materials to meet more severe pressure and temperature demands, while maintaining durability. Advanced alloys could reduce the need for charge enrichment to protect certain gas-path components at high speed and load conditions, permit more selective cooling to reduce heat-transfer losses, and allow engine downsizing, while maintaining performance, by achieving higher cylinder temperatures and pressures. As a first step in investigating downsizing strategies made possible through high-performance alloys, a GT-Power model of a 4-cylinder 1.6L turbocharged direct-injection SI engine was developed. The model was tuned and validated against experimental dynamometer data collected from a corresponding engine. The model was then used to investigate various operating strategies for increasing power density. Results from these investigations will provide valuable insight into how new materials might be utilized to meet the needs of future light-duty engines and will serve as the basis for a more comprehensive investigation using more-detailed thermo-mechanical modeling.


2011 ◽  
Author(s):  
Masakuni Oikawa ◽  
Yusuke Ogasawara ◽  
Yoshikazu Kondo ◽  
Kanan Sekine ◽  
Kaname Naganuma ◽  
...  

Author(s):  
Ming Zhang ◽  
Michael C. Drake ◽  
Kevin Peterson

Eight different multi-hole fuel injectors with nominally the same exterior geometry (8-hole, 60 degree circular symmetric spray pattern) but different levels of development (Generation I and Generation II), length-to-diameter (L/D) ratios (1.4 to 2.4), and manufacturing processes (EDM vs. laser drilled) are compared in a spray-guided, spark-ignition direct injection (SG-SIDI) single-cylinder optical engine. In-cylinder pressure measurements and exhaust emission measurements quantified effects of different injectors on combustion and emissions. Crank-angle-resolved white-light spray imaging and simultaneous flame and soot visualization quantified variations in spray structure, combustion propagation, and soot formation and oxidation. At a single operating condition (2000rpm, 95kPa inlet pressure, 90°C engine temperature, end of injection timing (EOI) @ 36 BTDC, spark advance (SA) @ 36 BTDC, 8.1mg/injection), all eight injectors have nearly the same IMEP (about 270kPa) and engine-out gaseous emissions. Experiments show that laser drilled injectors with lower L/D ratios (L/D = 1.4–2.0) have a totally collapsed fuel spray structure, a more penetrating liquid spray with severe fuel impingement on the piston, and rapidly-forming soot deposits on the piston. The collapsed, more compact fuel spray vaporized more slowly and the resulting rich zones led to strong soot luminosity. In contrast, the laser drilled injector with the highest L/D ratio (2.4) and the two EDM injectors (Generation I and Generation II with L/D = 2.0) show 8 distinct spray plumes, less fuel impingement, and much less soot emission intensity. Image analysis tools developed in Matlab were used to characterize the flame propagation and soot formation processes.


2021 ◽  
Author(s):  
Malki Maliha ◽  
Heiko Kubach ◽  
T. Koch

Abstract Direct injection in internal combustion engines is often realized with a multi hole injector which forms a spray pattern consisting of multiple jets with a small distance between their origin. This leads to an interaction of adjacent spray jets. The spray characteristic is significantly influenced by this interaction, and can considerably change the fuel evaporation and with it the emission behavior with varying number of holes or hole nozzle geometry [8]. Experimental investigations, especially if a good optical access to a single jet is necessary, often needs to use a comparable injector with a reduced number of holes. In addition to that, 3D-CFD simulation models can also use a reduction of spray jet number for a partial consideration of fuel mixture to reduce the computing time. For these cases a determination of the correlation between spray formation and reduced nozzle holes is important. In this work the spray patterns of an original 6-hole gasoline DI-injector and, after closing of 5 holes, the resulting 1-hole injector were compared. The fuel mass flow through one hole can change due to a change of hydrodynamic effects inside the nozzle and leads to a correcting factor for the injecting time, to get comparable fuel mass flows. The penetration depth, droplet speed, size and spatial distribution were measured. Additional investigations of the influence of the fuel pressure and fuel temperature were carried out.


Author(s):  
Tomio Obokata ◽  
Tsuneaki Ishima ◽  
Seiichi Shiga ◽  
Yousuke Eguro ◽  
Tomoyuki Matsuda ◽  
...  

Abstract To realize the pre-mixed combustion type Diesel engine, analyses of the wide-angle conical spray flow and its application to the direct injection Diesel engine have been made. In the present work, the spray was evaluated by high speed flow visualization, particle image velocimetry (PTV) measurement, phase Doppler anemometer (PDA) measurement and numerical simulation by KTVA-3V code, and finally the combustion and exhaust characteristics of the proposed engine are examined. The penetration and the shape of the conical sprays under different ambient pressures (0.1, 1.0 and 2.0 MPa) are obtained experimentally and with numerical simulations. Generally, good agreements between them are achieved. It is also cleared that the spray formation is strongly influenced by the surrounding pressure. PIV measurements show the initial development of the spray. The maximum velocity is about 80 m/s, which is almost in the same range as that obtained by the PDA measurements. For the combustion experiment, the excess air ratio was set at 3.1 and 2.5. The engine speed was varied from 1000 to 2000 rpm. Expected premixed combustion region is realized at around the fuel injection timing prior to 65 degree BTDC, where NOx and soot emissions are almost zero at the excess air ratio of 3.1.


Author(s):  
Eiji Ishii ◽  
Motoyuki Abe ◽  
Hideharu Ehara ◽  
Tohru Ishikawa

Direct injection gasoline-engines have both better engine power and fuel efficiency than port injection gasoline-engines. However, direct injection gasoline-engines also emit more particulate matter (PM) than port injection gasoline-engines do. To decrease PM, fuel injectors with short spray-penetration are required. More effective fuel injectors can be preliminarily designed by numerically simulating fuel spray. We previously developed a fuel-spray simulation. Both the fuel flow within the flow paths of an injector and the liquid column at the injector outlet were simulated by using a grid method. The liquid-column breakup was simulated by using a particle method. The motion of droplets within the air/fuel mixture (secondary-drop-breakup) region was calculated by using a discrete droplet model (DDM). In this study, we applied our fuel-spray simulation to sprays for the direct injection gasoline-engines. Simulated spray penetrations agreed relatively well with measured spray penetrations. Velocity distributions at the outlet of three kinds of nozzles were plotted by using a histogram, and the relationship between the velocity distributions and spray penetrations was studied. We found that shrinking the high-speed region and making the velocity-distribution uniform were required for short spray penetration.


Author(s):  
Ali Mohammadi ◽  
Masahiro Shioji ◽  
Yuki Matsui ◽  
Rintaro Kajiwara

Recently, an in-cylinder injection method has been considered for the improvement of thermal efficiency in natural-gas and hydrogen spark-ignition (SI) engines. However, the SI and combustion processes of gaseous jets are not well understood. The present study aims to provide fundamental data for the development of direct-injection SI gas engines. The ignition, combustion, and flame behavior of high-pressure and intermittent hydrogen and natural-gas jets in a constant volume combustion chamber were investigated. The effects of injection pressure, nozzle size, ambient pressure, and spark location were also investigated for various spark timings and equivalence ratios.


Sign in / Sign up

Export Citation Format

Share Document