scholarly journals Amylase-Producing Fungi and Bacteria Associated with Some Food Processing Wastes

2021 ◽  
Vol 38 (1) ◽  
pp. 74-82
Author(s):  
T. Okunwaye ◽  
P.O. Uadia ◽  
B.O. Okogbenin ◽  
E.A. Okogbenin ◽  
D.C. Onyia ◽  
...  

Amylases are enzymes that catalyze the hydrolysis of glycosidic bonds present in starch to release simple sugars. They are one of the most important enzymes in numerous commercial processes. In this investigation, fungal and bacterial strains from the following agro-industrial wastes were isolated and screened for amylolytic ability: soil from oil palm plantation, shea seed, date fruit, coconut meat, cassava effluent, cassava peel, cassava tubers, yam and potato tubers, starch medium, parboiled water from noodles and rice. The results revealed the presence of Geotrichum, Aspergillus, Penicillium, Trichoderma, Rhizopus and Fusarium spp. Five major genera of bacterial species namely Corynebacterium, Pseudomonas, Lactobacillus, Micrococcus and Bacillus were isolated and screened for amylase activity. Cassava soil had the highest heterotrophic bacterial count of 5.7 x105cfu/g and coconut meat waste had the lowest heterotrophic bacterial count of 1.3 x105cfu/g. All isolated microorganisms had the amylolytic ability. The fungal isolates had higher amylase activity when compared with the bacterial isolates. This investigation reveals organisms with high amylase activity.

2007 ◽  
Vol 73 (17) ◽  
pp. 5574-5579 ◽  
Author(s):  
Dimitry Y. Sorokin ◽  
Sander van Pelt ◽  
Tatjana P. Tourova ◽  
Gerard Muyzer

ABSTRACT The utilization of isobutyronitrile (iBN) as a C and N source under haloalkaline conditions by microbial communities from soda lake sediments and soda soils was studied. In both cases, a consortium consisting of two different bacterial species capable of the complete degradation and utilization of iBN at pH 10 was selected. The soda lake sediment consortium consisted of a new actinobacterium and a gammaproteobacterium from the genus Marinospirillum. The former was capable of fast hydrolysis of aliphatic nitriles to the corresponding amides and much-slower further hydrolysis of the amides to carboxylic acids. Its partner cannot hydrolyze nitriles but grew rapidly on amides and carboxylic acids, thus acting as a scavenger of products released by the actinobacterium. The soda soil consortium consisted of two Bacillus species (RNA group 1). One of them initiated nitrile hydrolysis, and the other utilized the hydrolysis products isobutyroamide (iBA) and isobutyrate (iB). In contrast to the actinobacterium, the nitrile-hydrolyzing soil Bacillus grew rapidly with hydrolysis products, but it was dependent on vitamins most probably supplied by its product-utilizing partner. All four bacterial strains isolated were moderately salt-tolerant alkaliphiles with a pH range for growth from pH 7.0 to 8.5 up to 10.3 to 10.5. However, both their nitrile hydratase and amidase activities had a near-neutral pH optimum, indicating an intracellular localization of these enzymes. Despite this fact, the study demonstrated a possibility of whole-cell biocatalytic hydrolysis of various nitriles at haloalkaline conditions.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1870
Author(s):  
Amina Aragosa ◽  
Valeria Specchia ◽  
Mariaenrica Frigione

The environmental issues caused by the impacts of synthetic plastics use and derived wastes are arising the attention to bio-based plastics, natural polymers produced from renewable resources, including agricultural, industrial, and domestic wastes. Bio-based plastics represent a potential alternative to petroleum-based materials, due to the insufficient availability of fossil resources in the future and the affordable low cost of renewable ones that might be consumed for the biopolymer synthesis. Among the polyhydroxyalkanoates (PHA), the polyhydroxybutyrate (PHB) biopolymer has been synthesized and characterized with great interest due to its wide range of industrial applications. Currently, a wide number of bacterial species from soil, activated sludge, wastewater, industrial wastes, and compost have been identified as PHB producers. This work has the purpose of isolating and characterizing PHB-producing bacteria from the agricultural soil samples of Argania spinosa in the south region of Morocco where the plant species is endemic and preserved. During this research, four heat-resistant bacterial strains have been isolated. Among them, two species have been identified as endospore forming bacteria following the Schaffer-Fulton staining method with Malachite green and the Methylene blue method. Black intracellular granules have been appreciated in microscopy at 100× for both strains after staining with Sudan black B. The morphological and biochemical analyses of the isolates, including sugar fermentation and antibiotic susceptibility tests, preliminarily identified the strains 1B and 2D1 belonging to the genus Serratia and Proteus, respectively.


Amylase ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 1-10
Author(s):  
Rashmi Rathour ◽  
Juhi Gupta ◽  
Bhawna Tyagi ◽  
Indu Shekhar Thakur

AbstractA psychrophilic and halophilic bacterial isolate, Shewanella sp. ISTPL2, procured from the pristine Pangong Lake, Ladakh, Jammu and Kashmir, India, was used for the production and characterization of the psychrophilic and alkalophilic α-amylase enzyme. The α-amylase is a critical enzyme that catalyses the hydrolysis of α-1,4-glycosidic bonds of starch molecules and is predominately utilized in biotechnological applications. The highest enzyme activity of partially purified extracellular α-amylase was 10,064.20 U/mL after 12 h of incubation in a shake flask at pH 6.9 and 10 °C. Moreover, the maximum intracellular α-amylase enzyme activity (259.62 U/mL) was also observed at 6 h of incubation. The extracellular α-amylase was refined to the homogeneity with the specific enzyme activity of 36,690.47 U/mg protein corresponding to 6.87-fold purification. The optimized pH and temperature for the α-amylase were found to be pH 8 and 4 °C, respectively, suggesting its stability at alkaline conditions and low or higher temperatures. The amylase activity was highly activated by Cu2+, Fe2+ and Ca2+, while inhibited by Cd2+, Co2+ and Na2+. As per our knowledge, the current study reports the highest activity of a psychrophilic α-amylase enzyme providing prominent biotechnological potential.


Author(s):  
Zaid Raad Abbas ◽  
Aqeel Mohammed Majeed Al-Ezee ◽  
Sawsan H

This study was conducted to explore the ability of Pseudomonas fluorescens and Bacillus cereus to solubilizing a phosphate in soil for enhancing the planting growth and, its relation with soill characterization. The isolates were identified as P.fluorescens and B. cereus using convential analysis and, its phosphate solubilization ability and sidrophore was shown by the clear zone formation on National Botanical Research Institute���s Phosphate medium. Moreover, Pseudomonas fluorescens isolates (n = 9) and three of B. cereus isolated from agricultural area in Baghdad university, Mustansiriyah university and Diyala bridge. Results displayed that bacterial count were varied in soil samples according to their region, and ranging from 30 to 60 *10 2 CFU/g in Baghdad university soil to 10���20 *10 2 CFU/g in Mustansiriyah university soil, the Baghdad soil macronutrient which included: NH4, NO3, P, and K were, 8.42, 20.53, 19.09, 218.73 respectively, While the physio analysis revealed that the mean of pH was 7.3 and EC was 8.63. on the other hand the micronutrient analysis indicated that the soil samples were included Ca, Fe, Mn, Zn and Cu which gave their mean 5025.9, 8.9, 4.9, 0.5 and 1.5 respectevily. Results revealed that all isolated bacteria (9 isolates of P.fluorescens and three isolates of B. cereus gave ahalo zone which mean their ability to be phosphate solubilizing bacteria at 100%. Results revealed that all isolated bacteria were detected a ability to produce high levels from chelating agents (siderophores)) by P.fluorescens and. B cereus at 100%, when appeared ahalo clear zone. Furthermore, the high levels of phosphate solubilization and siderophore production were grouped in bacterial species isolated from Iraqi soils. might be attributed to many soil factors such as soil nutrient status, soil acidity, water content, organic matter and soil enzyme activities.


2019 ◽  
Vol 16 (3) ◽  
pp. 245-248
Author(s):  
Hummera Rafique ◽  
Aamer Saeed ◽  
Ehsan Ullah Mughal ◽  
Muhammad Naveed Zafar ◽  
Amara Mumtaz ◽  
...  

Background: (±)-6,8-Dihydroxy-3-undecyl-3,4-dihydroisochromen-1-one is one of the structural analog of several substituted undecylisocoumarins isolated from Ononis natrix (Fabaceae), has been successfully synthesized by direct condensation of homopthalic acid (1) with undecanoyl chloride yields isochromen-1-one (2). Methods: Alkaline hydrolysis of (2) gave the corresponding keto-acid (3), which is then reduced to hydroxy acid (4) then its cyclodehydration was carried out with acetic anhydride to afford 3,4- dihydroisochromen-1-one (5). Followed by demethylation step, the synthesis of target 6,8- dihydroxy-7-methyl-3-undecyl-3,4-dihydroisocoumarin (6) was achieved. Results: In vitro antibacterial screening of all the synthesized compounds were carried out against ten bacterial strains by agar well diffusion method. Conclusion: Newly synthesized molecules exhibited moderate antibacterial activity and maximum inhibition was observed against Bacillus subtilus and Salmonella paratyphi.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


2020 ◽  
Vol 88 (4) ◽  
pp. 57
Author(s):  
Oussama Moussaoui ◽  
Rajendra Bhadane ◽  
Riham Sghyar ◽  
El Mestafa El Hadrami ◽  
Soukaina El Amrani ◽  
...  

A new series of amino acid derivatives of quinolines was synthesized through the hydrolysis of amino acid methyl esters of quinoline carboxamides with alkali hydroxide. The compounds were purified on silica gel by column chromatography and further characterized by TLC, NMR and ESI-TOF mass spectrometry. All compounds were screened for in vitro antimicrobial activity against different bacterial strains using the microdilution method. Most of the synthesized amino acid-quinolines show more potent or equipotent inhibitory action against the tested bacteria than their correspond esters. In addition, many of them exhibit fluorescent properties and could possibly be utilized as fluorophores. Molecular docking and simulation studies of the compounds at putative bacterial target enzymes suggest that the antimicrobial potency of these synthesized analogues could be due to enzyme inhibition via their favorable binding at the fluoroquinolone binding site at the GyrA subunit of DNA gyrase and/or the ParC subunit of topoisomerase-IV.


2008 ◽  
Vol 54 (6) ◽  
pp. 501-508 ◽  
Author(s):  
Karina Cogo ◽  
Michelle Franz Montan ◽  
Cristiane de Cássia Bergamaschi ◽  
Eduardo D. Andrade ◽  
Pedro Luiz Rosalen ◽  
...  

The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii , Porphyromonas gingivalis , or Fusobacterium nucleatum and dual-species biofilms of S. gordonii – F. nucleatum and F. nucleatum – P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis , Streptococcus mitis , Propionibacterium acnes , Actinomyces naeslundii , and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.


Sign in / Sign up

Export Citation Format

Share Document